Derivatives and Shapes of Curves (4.3)

Recall from Section 2.10 that the derivative tells us information about the shape of a curve.

First Derivative

Fact. If $f^{\prime}(c)=0$, then f has a horizontal tangent at c.
Definition. f has a critical number at c in $\mathscr{D}(f)$ if either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ DNE.
Fact (Fermat's Theorem). If f has a local extremum at c, then c is a critical point of f.

Increasing/Decreasing Test

(a) If $f^{\prime}>0$ on an interval, then f is increasing on that interval.
(b) If $f^{\prime}<0$ on an interval, then f is dereasing on that interval.

First Derivative Test

Suppose that c is a critical number of the continuous function f.
(a) If f^{\prime} changes sign from positive to negative at c, then f has a local maximum at c.
(b) If f^{\prime} changes sign from negative to positive at c, then f has a local minimum at c.
(c) If f^{\prime} does not change sign at c, then f has no local extremum at c.

Hint: Remember all of these with a picture.

Second Derivative

Definition. A function f is concave $u p$ on an interval I if f^{\prime} is increasing on I.
Definition. A function f is concave down on an interval I if f^{\prime} is decreasing on I.
Definition. A point c where f changes concavity is called an inflection point.

Concavity Test

(a) If $f^{\prime \prime}>0$ on an interval, then f is concave up on that interval.
(b) If $f^{\prime \prime}<0$ on an interval, then f is concave down on that interval.

Second Derivative Test

Suppose that $f^{\prime \prime}$ is continuous near c.
(a) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local minimum at c.
(b) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local maximum at c.

Example. $f(x)=|x|$ has a local minimum at 0, but $f^{\prime}(0)$ DNE.
Example. $f(x)=x^{1 / 3}$ changes concavity at 0 so that 0 is an inflection point, but $f^{\prime}(0)$ and $f^{\prime \prime}(0)$ DNE.

Example. Sketch a graph of $f(x)=\frac{x^{2}+7 x+12}{x^{2}}$ being as detailed as possible.
Solution: We collect information from f, f^{\prime}, and $f^{\prime \prime}$.

- f tells us roots and asymptotes
(i) The domain of f is $\mathscr{D}(f)=\{x \neq 0\}$.
(ii) Roots occur where $f(x)=0$. Thus, $f(x)=0$ when $x^{2}+7 x+12=0$ (provided that $\left.x \neq 0\right)$. Since, $x^{2}+7 x+12=(x+4)(x-3)$, there are two roots, namely $x=-4$ and $x=3$.
(iii) To compute horizontal asymptotes, we need to check $\lim _{x \rightarrow \pm \infty} f(x)$. Thus,

$$
\lim _{x \rightarrow \infty} \frac{x^{2}+7 x+12}{x^{2}}=\lim _{x \rightarrow \infty}\left(1+7 x^{-1}+12 x^{-2}\right)=1
$$

and

$$
\lim _{x \rightarrow-\infty} \frac{x^{2}+7 x+12}{x^{2}}=\lim _{x \rightarrow-\infty}\left(1+7 x^{-1}+12 x^{-2}\right)=1
$$

so that $y=1$ is a horizontal asymptote.
(iv) To compute vertical asymptotes, we check the behaviour where f blows up.

$$
\lim _{x \rightarrow 0+} \frac{x^{2}+7 x+12}{x^{2}}=\infty
$$

and

$$
\lim _{x \rightarrow 0-} \frac{x^{2}+7 x+12}{x^{2}}=\infty
$$

(v) We can also find the "sign" of f :

$$
\begin{array}{cc}
x<-4: & f>0 \\
-4<x<-3: & f<0 \\
-3<x<0: & f>0 \\
x>0: & f>0
\end{array}
$$

- f^{\prime} tells us CNs and intervals of increase/decrease

We compute

$$
f^{\prime}(x)=\frac{d}{d x} \frac{x^{2}+7 x+12}{x^{2}}=\frac{d}{d x}\left(1+7 x^{-1}+12 x^{-2}\right)=-7 x^{-2}-24 x^{-3}=\frac{-(7 x+24)}{x^{3}} .
$$

Do not forget to write f^{\prime} in factored form.
CNs occur where $f^{\prime}(x)=0$ or where f^{\prime} DNE. Thus, $f^{\prime}(x)=0$ when $x=-24 / 7$, and f^{\prime} DNE when $x=0$. Observe that $0 \notin \mathscr{D}(f)$ so it is not a CN.
(vi) The intervals of increase and decrease are:

$$
\begin{array}{cll}
x<-24 / 7: & f^{\prime}<0: & f \text { decreasing } \\
-24 / 7<x<0: & f^{\prime}>0: & f \text { increasing } \\
x>0: & f^{\prime}<0: & f \text { decreasing }
\end{array}
$$

- $f^{\prime \prime}$ tells us concavity

We compute

$$
f^{\prime \prime}(x)=\frac{d}{d x} \frac{-(7 x+24)}{x^{3}}=\frac{d}{d x}\left(-7 x^{-2}-24 x^{-3}\right)=14 x^{-3}+72 x^{-4}=\frac{14 x+72}{x^{4}} .
$$

Do not forget to write $f^{\prime \prime}$ in factored form.
Notice that $f^{\prime \prime}(x)=0$ when $x=-72 / 14=-36 / 7$ and that $f^{\prime \prime}$ DNE when $x=0$.
(vii) The concavity is:

$$
\begin{array}{lll}
x<-36 / 7: & f^{\prime \prime}>0: & f \text { is concave down } \\
x>-36 / 7: & f^{\prime \prime}<0: & f \text { is concave up }
\end{array}
$$

Hence, the only inflection point is $x=-36 / 7$.

- combine and sketch f

Mean Value Theorem

Suppose that f is differentiable on (a, b) (and the one-sided derivatives exist at a and b).
Note that f MUST be continuous.

The secant line connecting a and b has slope

$$
\frac{f(b)-f(a)}{b-a} .
$$

Notice that there must be a point where the tangent is parallel to this secant.
Fact (Mean Value Theorem). If f is differentiable on $[a, b]$, then there exists a number c in (a, b) (that is, with $a<c<b$) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} .
$$

