Maximum and Minimum Values (4.2)

Example. Determine the points at which $f(x)=\sin x$ attains its maximum and minimum.
Solution: $\sin x$ attains the value 1 whenever $x=\frac{\pi}{2} \pm 2 \pi n$ and a minimum value of -1 whenever $x=\frac{3 \pi}{2} \pm 2 \pi n, n=0,1,2, \ldots$.

Definition. The function f has an absolute maximum at c if $f(c) \geq f(x)$ for all $x \in \mathscr{D}(f)$.
Definition. The function f has an absolute minimum at c if $f(c) \leq f(x)$ for all $x \in \mathscr{D}(f)$.
Definition. The maximum and minimum values of f are called extreme values.
Example. Determine the extreme values of $f(x)=x^{2}$.
Solution: Since $x^{2} \geq 0$ for all $x, f(x) \geq f(0)$. Therefore, $f(0)=0$ is the absolute minimum.
However, f has no maximum.
Example. Graph $f(x)=3 x^{4}-16 x^{3}+18 x^{2}$ for $-1 \leq x \leq 4$, and determine its absolute maximum and absolute minimum.

Solution: Graphically we see:

\therefore absolute minimum: $f(3)=27$, absolute maximum: $f(-1)=37$
Fact (Extreme Value Theorem). If f is continuous on $[a, b]$, then f attains its absolute maximum $f(c)$ and its absolute minimum $f(d)$ at some numbers $c, d \in[a, b]$. That is, at points c and d with $a \leq c, d \leq b$.

Example. We need both continuity and a closed interval to guarantee extreme values.

Fact (Fermat's Theorem). If f has a local extrema at c and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.
Example. $f(x)=x^{2}$ has a local minimum at 0 . Since $f^{\prime}(x)$ exists, we must have $f^{\prime}(0)=0$. Indeed, $f^{\prime}(x)=2 x$ so $f^{\prime}(0)=0$.

Example. Even though $f(x)=|x|$ has a local minimum at 0, we cannot use Fermat's Theorem since $f^{\prime}(x)$ DNE at $x=0$.

Definition. A critical number (or critical value or critical point) of a function f is a number c in $\mathscr{D}(f)$ such that either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ DNE.
Example. $f(x)=x^{-2}$ has no critical numbers. Even though $f^{\prime}(x)$ DNE at $x=0$, it is not a critcal number because $0 \notin \mathscr{D}(f)$.
Example. Find all critical numbers of $f(x)=x^{3 / 5}(4-x)$.
Solution: By the product rule

$$
f^{\prime}(x)=\frac{3}{5} x^{-2 / 5}(4-x)-x^{3 / 5}=\frac{12-8 x}{5 x^{2 / 5}} .
$$

Thus $f^{\prime}(x)=0$ when $x=12 / 8=3 / 2$, and $f^{\prime}(x)$ DNE when $x=0$. Since both $3 / 2$ and 0 are in $\mathscr{D}(f)$, they are both critical numbers.

$$
\therefore \text { CNs are } x=3 / 2, \text { and } x=0 .
$$

Note. When finding CNs, it is imperative that you write $f^{\prime}(x)$ in factored form.
Fact. If f has a local maximum or local minimum at c, then c is a critical number of f.

Closed Interval Method: To find the absolute maximum and the absolute minimum of a continuous function on a closed interval $[a, b]$:
(1) Find the values of f at the critcal numbers in (a, b).
(2) Find the values of f at the endpoints of $[a, b]$.
(3) You now have the maximum and minimum values.

Example. Find the absolute maximum and absolute minimum of $f(x)=x^{4}-2 x^{2}+3$ on $[-2,3]$.
Solution: (1) $f^{\prime}(x)=4 x^{3}-4 x=4 x\left(x^{2}-1\right)=4 x(x-1)(x+1)$. Therfore the CNs are $x=0$, $x=1$, and $x=-1$. The function value at these three critical numbers are $f(0)=3, f(1)=2$, and $f(-1)=2$.
(2) The function values at the endpoints are $f(-2)=16-8+3=11$ and $f(3)=81-18+3=66$.

By the Extreme Value Theorem, since f is continuous on the closed interval $[a, b]$, it must attain its absolute maximum and absolute minimum.
(3) By the closed interval method
absolute maximum: $f(3)=66$
absolute minimum: $f(1)=f(-1)=2$
Example. Find the absolute maximum and absolute minimum of $f(x)=x^{2} e^{-x}$ on $[-1,1]$.
Solution: $f^{\prime}(x)=2 x e^{-x}-x^{2} e^{-x}=e^{-x}\left(2 x-x^{2}\right)=x e^{-x}(2-x)$. Thus, the critical numbers are $x=0$ and $x=2$, and $f(0)=0, f(2)=4 e^{-2}$.

HOWEVER, $x=2$ is NOT in the given interval. Therefore we disregard it.
The values at the endpoints are $f(-1)=e, f(1)=e^{-1}$.
By the closed interval method
absolute maximum: $f(-1)=e$
absolute minimum: $f(0)=0$

Derivatives and Shapes of Curves (4.3)

Recall from Section 2.10 that the derivative tells us information about the shape of a curve.

First Derivative

Fact. If $f^{\prime}(c)=0$, then f has a horizontal tangent at c.
Definition. f has a critical number at c in $\mathscr{D}(f)$ if either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ DNE.
Fact (Fermat's Theorem). If f has a local extremum at c, then c is a critical point of f.

Increasing/Decreasing Test

(a) If $f^{\prime}>0$ on an interval, then f is increasing on that interval.
(b) If $f^{\prime}<0$ on an interval, then f is dereasing on that interval.

First Derivative Test

Suppose that c is a critical number of the continuous function f.
(a) If f^{\prime} changes sign from positive to negative at c, then f has a local maximum at c.
(b) If f^{\prime} changes sign from negative to positive at c, then f has a local minimum at c.
(c) If f^{\prime} does not change sign at c, then f has no local extremum at c.

Hint: Remember all of these with a picture.

Second Derivative

Definition. A function f is concave up on an interval I if f^{\prime} is increasing on I.
Definition. A function f is concave down on an interval I if f^{\prime} is decreasing on I.
Definition. A point c where f changes concavity is called an inflection point.

Concavity Test

(a) If $f^{\prime \prime}>0$ on an interval, then f is concave up on that interval.
(b) If $f^{\prime \prime}<0$ on an interval, then f is concave down on that interval.

Second Derivative Test

Suppose that $f^{\prime \prime}$ is continuous near c.
(a) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local minimum at c.
(b) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local maximum at c.

Example. $f(x)=|x|$ has a local minimum at 0 , but $f^{\prime}(0)$ DNE.

Example. $f(x)=x^{1 / 3}$ changes concavity at 0 so that o is an inflection point, but $f^{\prime}(0)$ and $f^{\prime \prime}(0)$ DNE.

Mean Value Theorem

Suppose that f is differentiable on (a, b) (and the one-sided derivatives exist at a and b).
Note that f MUST be continuous.
The secant line connecting a and b has slope

$$
\frac{f(b)-f(a)}{b-a} .
$$

Notice that there must be a point where the tangent is parallel to this secant.
Fact (Mean Value Theorem). If f is differentiable on $[a, b]$, then there exists a number c in (a, b) (that is, with $a<c<b$) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

