
Math 111.01 July 14, 2003
Summer 2003

Applications of the Chain Rule (3.5, 3.6, 3.7)

Tangents to Parametric Curves

Suppose that we have a parametric curve described by the equations x = x(t) and y = y(t). It
is often possible to compute the equation of a tangent line at a point on the curve. By the chain
rule,

dy

dt
=

dy

dx

dx

dt

so that if dx
dt 6= 0, then we can write

dy

dx
=

dy
dt
dx
dt

.

Example. Consider the circle x(t) = cos t, y(t) = sin t, 0 ≤ t < 2π. Find the equation of the
tangent line when t = π/4.

Solution: Note that when t = π/4, that x = 1/
√

2, and y = 1/
√

2. Furthermore, dx
dt = − sin t

and dy
dt = cos t. Thus, when t = π/4,

dy

dx
=
− sin(π/4)
cos(π/4)

=
−1/

√
2

1/
√

2
= −1

so that the equation of the tangent line is

y − 1/
√

2 = −1(x− 1/
√

2).

Implicit Differentiation

Consider the function f . We can represent this function as a formula f(x). This function can
also be represented by its graph {(x, y) : y = f(x)}. As a shortcut, we can write y = f(x), and
then compute dy

dx = y′ = f ′(x).

Example. Suppose that
f(x) = ex sin(

√
3x + x−2).

Let y = f(x) and compute y′.

Solution: If y = ex sin(
√

3x + x−2), then

y′ = ex sin(
√

3x + x−2) + ex [sin(
√

3x + x−2)]′

= ex sin(
√

3x + x−2) + ex cos(
√

3x + x−2) [
√

3x + x−2]′

= ex sin(
√

3x + x−2) + ex cos(
√

3x + x−2)
1

2
√

3x + x−2
[3x + x−2]′

= ex sin(
√

3x + x−2) + ex cos(
√

3x + x−2)
1

2
√

3x + x−2
(3− 2x−3)
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Example. Consider the graph given implicitly by ex − y = 7x. If we write this as y = ex − 7x,
then we see this is the graph of the function f(x) = ex − 7x. Now, we can take its derivative:
f ′(x) = ex − 7x.

Alternatively, we can start directly with the equation ex − y = 7x, and take the derivative with
respect to x of both sides. Here, the “dee”-notation of Leibniz is useful.

d

dx
(ex − y) =

d

dx
(7x)

d

dx
ex − dy

dx
=

d

dx
(7x)

ex − dy

dx
= 7

dy

dx
= ex − 7

Sometimes, the relationship between x and y does not define a function. In this case, it may
still be possible to determine slopes of tangent lines to curves.

Example. Consider the circle x2 + y2 = 1. What is the equation of the tangent line to the
circle at (1/

√
2, 1/

√
2)?

Solution: This equation does not define a function. (Of course, we can consider the two functions
f1(x) =

√
1− x2 and f2(x) = −

√
1− x2 for the top and bottom half, respectively, of the circle.)

Taking derivatives of both sides with respect to x gives:

d

dx
(x2 + y2) =

d

dx
(1)

d

dx
x2 +

d

dx
y2 =

d

dx
(1)

2x + 2y
dy

dx
= 0

dy

dx
= −x

y

Thus, at the point (1/
√

2, 1/
√

2), the slope of the tangent is

dy

dx
= −x

y
= −1/

√
2

1/
√

2
= −1

and the equation of the tangent line is therefore

y − 1/
√

2 = −1(x− 1/
√

2).

Question: At what points does the circle have a horizontal tangent? a vertical tangent?

This is an example of implicit differentiation.

2



Example. The equation x3 + y3 = 6xy describes a curve called the “Folium of Descartes.” It is
not possible to solve for y in terms of x. However, we can find the equation of various tangent
lines. For example, the point (3, 3) lies on the Folium. Find the equation of the tangent line there.

Solution: Taking derivatives implicitly gives:

d

dx
(x3 + y3) =

d

dx
(6xy)

d

dx
x3 +

d

dx
y3 =

d

dx
(6xy)

3x2 + 3y2 dy

dx
= 6x

dy

dx
+ 6y

Solving for dy
dx gives

dy

dx
=

6y − 3x2

3y2 − 6x
.

Thus, at the point (3, 3), the slope of the tangent is

dy

dx
=

6(3)− 3(3)2

3(3)2 − 6(3)
= −1.

The equation of the tangent line is therefore

y − 3 = −1(x− 3).
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When we combine implicit differentiation with the chain rule, we obtain a powerful technique
for determining new derivative formulas.

Example. Compute d
dx lnx.

Solution: If we write y = lnx, then we can solve for y implicitly, and use a formula we know.
That is, if y = ln x, then ey = x. Taking derivatives with respect to x of both sides gives:

d

dx
ey =

dx

dx
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ey dy

dx
= 1

dy

dx
=

1
ey

And now the big ideas! y = ln x, and ey = x, so we substitute these back in and get

d

dx
lnx =

1
x

.

We can now prove the general power rule.

Example. Compute d
dxxa where a ∈ R (and x 6= 0 if a < 0).

Solution: If we write y = xa, then we can solve for y implicitly, and use a formula we know.
That is, if y = xa, then ln y = a lnx. Taking derivatives with respect to x of both sides gives:

d

dx
ln y =

d

dx
(a lnx)

1
y

dy

dx
=

a

x

dy

dx
=

ay

x

And now the big idea! y = xa so we substitute this back in and get

d

dx
xa =

axa

x
= axa−1.

Alternatively, we could write
y = xa = ea ln x

so that
y′ = ea ln x a

x
= axa−1.

Question: Why is ln called the natural logarithm? What is so natural about the base e =
2.71828 . . .?

Example. Compute d
dx loga x where a > 0.

Solution: If we write y = loga x, then ay = x. Taking derivatives with respect to x of both sides
gives:

d

dx
ay =

dx

dx

ay ln a
dy

dx
= 1

dy

dx
=

1
ay ln a

Now, we can substitute y = loga x and ay = x to get

d

dx
loga x =

1
x ln a

.
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Alternatively,
d

dx
loga x =

d

dx

lnx

ln a
=

1
x ln a

.

Thus, only in the case a = e, do the formulas work out nicely:

d

dx
loge x =

1
x ln e

=
1
x

and
d

dx
ex = ex ln e = ex.

Example. Compute d
dx sin−1 x.

Solution: If we write y = sin−1 x, then sin y = x. Hence,

d

dx
sin y =

dx

dx

cos y
dy

dx
= 1

dy

dx
=

1
cos y

We now need to somehow discover what cos y is in terms of x if sin y = x. Remember that
sin2 y + cos2 y = 1. Therefore, cos2 y = 1− sin2 y = 1− x2. Hence, cos y =

√
1− x2, so that

d

dx
sin−1 x =

1√
1− x2

.

Example. Compute d
dx tan−1 x.

Solution: If we write y = tan−1 x, then tan y = x. Hence,

d

dx
tan y =

dx

dx

sec2 y
dy

dx
= 1

dy

dx
=

1
sec2 y

We now need to somehow discover what sec y is in terms of x if sin y = x. Remember that
tan2 y + 1 = sec2 y. Therefore, sec2 y = tan2 y + 1 = x2 + 1. Hence,

d

dx
tan−1 x =

1
x2 + 1

.

Homework. Compute d
dx cos−1 x and d

dx csc−1 x.

Example. Find y′ if xy + sin(x + y) = 3.

Solution: Taking derivatives implicitly gives y + xy′ + cos(x + y)(1 + y′) = 0 so that

y′ =
− cos(x + y)− y

x + cos(x + y)
.

Now find y′′. Note that it is easiest to work with the implicit equation involving y′.
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Example. Compute d
dx |x|.

Solution: If we write |x| =
√

x2, then

d

dx
|x| = d

dx

√
x2 =

1

2
√

x2
2x =

x

|x|
=
|x|
x

.

Homework. Stewart Page 236 #73

Example. Compute d
dx ln |x|.

Solution: By the chain rule,
d

dx
ln |x| = 1

|x|
|x|
x

=
1
x

.

Thus,
d

dx
ln |x| = 1

x
.

Logarithmic Differentiation

Sometimes, taking logs before taking derivatives allows us to simplify the calculations.

Example. Compute
d

dx

x3/4
√

x2 + 1
(3x + 2 sinx)5

.

Solution: We could use the power, quotient, and chain rules together, but yuck! Instead, write

y =
x3/4

√
x2 + 1

(3x + 2 sinx)5

and take logs:

ln y = ln

(
x3/4

√
x2 + 1

(3x + 2 sinx)5

)
=

3
4

lnx +
1
2

ln(x2 + 1)− 5 ln(3x + 2 sinx).

Now, taking derivatives with respect to x gives

d

dx
ln y =

3
4

d

dx
lnx +

1
2

d

dx
ln(x2 + 1)− 5

d

dx
ln(3x + 2 sinx)

so that
1
y

dy

dx
=

3
4x

+
2x

2(x2 + 1)
− 5(3 + 2 cos x)

3x + sinx
,

or in other words

d

dx

x3/4
√

x2 + 1
(3x + 2 sinx)5

=

(
x3/4

√
x2 + 1

(3x + 2 sinx)5

)(
3
4x

+
x

x2 + 1
− 15 + 10 cos x)

3x + sinx

)
.
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