Applications of the Chain Rule (3.5, 3.6, 3.7)

Tangents to Parametric Curves

Suppose that we have a parametric curve described by the equations $x=x(t)$ and $y=y(t)$. It is often possible to compute the equation of a tangent line at a point on the curve. By the chain rule,

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}
$$

so that if $\frac{d x}{d t} \neq 0$, then we can write

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
$$

Example. Consider the circle $x(t)=\cos t, y(t)=\sin t, 0 \leq t<2 \pi$. Find the equation of the tangent line when $t=\pi / 4$.

Solution: Note that when $t=\pi / 4$, that $x=1 / \sqrt{2}$, and $y=1 / \sqrt{2}$. Furthermore, $\frac{d x}{d t}=-\sin t$ and $\frac{d y}{d t}=\cos t$. Thus, when $t=\pi / 4$,

$$
\frac{d y}{d x}=\frac{-\sin (\pi / 4)}{\cos (\pi / 4)}=\frac{-1 / \sqrt{2}}{1 / \sqrt{2}}=-1
$$

so that the equation of the tangent line is

$$
y-1 / \sqrt{2}=-1(x-1 / \sqrt{2})
$$

Implicit Differentiation

Consider the function f. We can represent this function as a formula $f(x)$. This function can also be represented by its graph $\{(x, y): y=f(x)\}$. As a shortcut, we can write $y=f(x)$, and then compute $\frac{d y}{d x}=y^{\prime}=f^{\prime}(x)$.

Example. Suppose that

$$
f(x)=e^{x} \sin \left(\sqrt{3 x+x^{-2}}\right)
$$

Let $y=f(x)$ and compute y^{\prime}.
Solution: If $y=e^{x} \sin \left(\sqrt{3 x+x^{-2}}\right)$, then

$$
\begin{aligned}
y^{\prime} & =e^{x} \sin \left(\sqrt{3 x+x^{-2}}\right)+e^{x}\left[\sin \left(\sqrt{3 x+x^{-2}}\right)\right]^{\prime} \\
& =e^{x} \sin \left(\sqrt{3 x+x^{-2}}\right)+e^{x} \cos \left(\sqrt{3 x+x^{-2}}\right)\left[\sqrt{3 x+x^{-2}}\right]^{\prime} \\
& =e^{x} \sin \left(\sqrt{3 x+x^{-2}}\right)+e^{x} \cos \left(\sqrt{3 x+x^{-2}}\right) \frac{1}{2 \sqrt{3 x+x^{-2}}}\left[3 x+x^{-2}\right]^{\prime} \\
& =e^{x} \sin \left(\sqrt{3 x+x^{-2}}\right)+e^{x} \cos \left(\sqrt{3 x+x^{-2}}\right) \frac{1}{2 \sqrt{3 x+x^{-2}}}\left(3-2 x^{-3}\right)
\end{aligned}
$$

Example. Consider the graph given implicitly by $e^{x}-y=7 x$. If we write this as $y=e^{x}-7 x$, then we see this is the graph of the function $f(x)=e^{x}-7 x$. Now, we can take its derivative: $f^{\prime}(x)=e^{x}-7 x$.

Alternatively, we can start directly with the equation $e^{x}-y=7 x$, and take the derivative with respect to x of both sides. Here, the "dee"-notation of Leibniz is useful.

$$
\begin{gathered}
\frac{d}{d x}\left(e^{x}-y\right)=\frac{d}{d x}(7 x) \\
\frac{d}{d x} e^{x}-\frac{d y}{d x}=\frac{d}{d x}(7 x) \\
e^{x}-\frac{d y}{d x}=7 \\
\frac{d y}{d x}=e^{x}-7
\end{gathered}
$$

Sometimes, the relationship between x and y does not define a function. In this case, it may still be possible to determine slopes of tangent lines to curves.

Example. Consider the circle $x^{2}+y^{2}=1$. What is the equation of the tangent line to the circle at $(1 / \sqrt{2}, 1 / \sqrt{2})$?

Solution: This equation does not define a function. (Of course, we can consider the two functions $f_{1}(x)=\sqrt{1-x^{2}}$ and $f_{2}(x)=-\sqrt{1-x^{2}}$ for the top and bottom half, respectively, of the circle.) Taking derivatives of both sides with respect to x gives:

$$
\begin{gathered}
\frac{d}{d x}\left(x^{2}+y^{2}\right)=\frac{d}{d x}(1) \\
\frac{d}{d x} x^{2}+\frac{d}{d x} y^{2}=\frac{d}{d x}(1) \\
2 x+2 y \frac{d y}{d x}=0 \\
\frac{d y}{d x}=-\frac{x}{y}
\end{gathered}
$$

Thus, at the point $(1 / \sqrt{2}, 1 / \sqrt{2})$, the slope of the tangent is

$$
\frac{d y}{d x}=-\frac{x}{y}=-\frac{1 / \sqrt{2}}{1 / \sqrt{2}}=-1
$$

and the equation of the tangent line is therefore

$$
y-1 / \sqrt{2}=-1(x-1 / \sqrt{2}) .
$$

Question: At what points does the circle have a horizontal tangent? a vertical tangent?
This is an example of implicit differentiation.

Example. The equation $x^{3}+y^{3}=6 x y$ describes a curve called the "Folium of Descartes." It is not possible to solve for y in terms of x. However, we can find the equation of various tangent lines. For example, the point $(3,3)$ lies on the Folium. Find the equation of the tangent line there.

Solution: Taking derivatives implicitly gives:

$$
\begin{gathered}
\frac{d}{d x}\left(x^{3}+y^{3}\right)=\frac{d}{d x}(6 x y) \\
\frac{d}{d x} x^{3}+\frac{d}{d x} y^{3}=\frac{d}{d x}(6 x y) \\
3 x^{2}+3 y^{2} \frac{d y}{d x}=6 x \frac{d y}{d x}+6 y
\end{gathered}
$$

Solving for $\frac{d y}{d x}$ gives

$$
\frac{d y}{d x}=\frac{6 y-3 x^{2}}{3 y^{2}-6 x}
$$

Thus, at the point $(3,3)$, the slope of the tangent is

$$
\frac{d y}{d x}=\frac{6(3)-3(3)^{2}}{3(3)^{2}-6(3)}=-1
$$

The equation of the tangent line is therefore

$$
y-3=-1(x-3) .
$$

When we combine implicit differentiation with the chain rule, we obtain a powerful technique for determining new derivative formulas.
Example. Compute $\frac{d}{d x} \ln x$.
Solution: If we write $y=\ln x$, then we can solve for y implicitly, and use a formula we know. That is, if $y=\ln x$, then $e^{y}=x$. Taking derivatives with respect to x of both sides gives:

$$
\frac{d}{d x} e^{y}=\frac{d x}{d x}
$$

$$
\begin{aligned}
& e^{y} \frac{d y}{d x}=1 \\
& \frac{d y}{d x}=\frac{1}{e^{y}}
\end{aligned}
$$

And now the big ideas! $y=\ln x$, and $e^{y}=x$, so we substitute these back in and get

$$
\frac{d}{d x} \ln x=\frac{1}{x} .
$$

We can now prove the general power rule.
Example. Compute $\frac{d}{d x} x^{a}$ where $a \in \mathbb{R}($ and $x \neq 0$ if $a<0)$.
Solution: If we write $y=x^{a}$, then we can solve for y implicitly, and use a formula we know. That is, if $y=x^{a}$, then $\ln y=a \ln x$. Taking derivatives with respect to x of both sides gives:

$$
\begin{gathered}
\frac{d}{d x} \ln y=\frac{d}{d x}(a \ln x) \\
\frac{1}{y} \frac{d y}{d x}=\frac{a}{x} \\
\frac{d y}{d x}=\frac{a y}{x}
\end{gathered}
$$

And now the big idea! $y=x^{a}$ so we substitute this back in and get

$$
\frac{d}{d x} x^{a}=\frac{a x^{a}}{x}=a x^{a-1}
$$

Alternatively, we could write

$$
y=x^{a}=e^{a \ln x}
$$

so that

$$
y^{\prime}=e^{a \ln x} \frac{a}{x}=a x^{a-1} .
$$

Question: Why is \ln called the natural logarithm? What is so natural about the base $e=$ 2.71828...?

Example. Compute $\frac{d}{d x} \log _{a} x$ where $a>0$.
Solution: If we write $y=\log _{a} x$, then $a^{y}=x$. Taking derivatives with respect to x of both sides gives:

$$
\begin{gathered}
\frac{d}{d x} a^{y}=\frac{d x}{d x} \\
a^{y} \ln a \frac{d y}{d x}=1 \\
\frac{d y}{d x}=\frac{1}{a^{y} \ln a}
\end{gathered}
$$

Now, we can substitute $y=\log _{a} x$ and $a^{y}=x$ to get

$$
\frac{d}{d x} \log _{a} x=\frac{1}{x \ln a} .
$$

Alternatively,

$$
\frac{d}{d x} \log _{a} x=\frac{d}{d x} \ln x \ln ^{\ln a}=\frac{1}{x \ln a} .
$$

Thus, only in the case $a=e$, do the formulas work out nicely:

$$
\frac{d}{d x} \log _{e} x=\frac{1}{x \ln e}=\frac{1}{x} \quad \text { and } \quad \frac{d}{d x} e^{x}=e^{x} \ln e=e^{x} .
$$

Example. Compute $\frac{d}{d x} \sin ^{-1} x$.
Solution: If we write $y=\sin ^{-1} x$, then $\sin y=x$. Hence,

$$
\begin{gathered}
\frac{d}{d x} \sin y=\frac{d x}{d x} \\
\cos y \frac{d y}{d x}=1 \\
\frac{d y}{d x}=\frac{1}{\cos y}
\end{gathered}
$$

We now need to somehow discover what $\cos y$ is in terms of x if $\sin y=x$. Remember that $\sin ^{2} y+\cos ^{2} y=1$. Therefore, $\cos ^{2} y=1-\sin ^{2} y=1-x^{2}$. Hence, $\cos y=\sqrt{1-x^{2}}$, so that

$$
\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}} .
$$

Example. Compute $\frac{d}{d x} \tan ^{-1} x$.
Solution: If we write $y=\tan ^{-1} x$, then $\tan y=x$. Hence,

$$
\begin{aligned}
& \frac{d}{d x} \tan y=\frac{d x}{d x} \\
& \sec ^{2} y \frac{d y}{d x}=1 \\
& \frac{d y}{d x}=\frac{1}{\sec ^{2} y}
\end{aligned}
$$

We now need to somehow discover what $\sec y$ is in terms of x if $\sin y=x$. Remember that $\tan ^{2} y+1=\sec ^{2} y$. Therefore, $\sec ^{2} y=\tan ^{2} y+1=x^{2}+1$. Hence,

$$
\frac{d}{d x} \tan ^{-1} x=\frac{1}{x^{2}+1}
$$

Homework. Compute $\frac{d}{d x} \cos ^{-1} x$ and $\frac{d}{d x} \csc ^{-1} x$.
Example. Find y^{\prime} if $x y+\sin (x+y)=3$.
Solution: Taking derivatives implicitly gives $y+x y^{\prime}+\cos (x+y)\left(1+y^{\prime}\right)=0$ so that

$$
y^{\prime}=\frac{-\cos (x+y)-y}{x+\cos (x+y)} .
$$

Now find $y^{\prime \prime}$. Note that it is easiest to work with the implicit equation involving y^{\prime}.

Example. Compute $\frac{d}{d x}|x|$.
Solution: If we write $|x|=\sqrt{x^{2}}$, then

$$
\frac{d}{d x}|x|=\frac{d}{d x} \sqrt{x^{2}}=\frac{1}{2 \sqrt{x^{2}}} 2 x=\frac{x}{|x|}=\frac{|x|}{x}
$$

Homework. Stewart Page 236 \#73
Example. Compute $\frac{d}{d x} \ln |x|$.
Solution: By the chain rule,

$$
\frac{d}{d x} \ln |x|=\frac{1}{|x|} \frac{|x|}{x}=\frac{1}{x}
$$

Thus,

$$
\frac{d}{d x} \ln |x|=\frac{1}{x}
$$

Logarithmic Differentiation

Sometimes, taking logs before taking derivatives allows us to simplify the calculations.
Example. Compute $\frac{d}{d x} \frac{x^{3 / 4} \sqrt{x^{2}+1}}{(3 x+2 \sin x)^{5}}$.
Solution: We could use the power, quotient, and chain rules together, but yuck! Instead, write

$$
y=\frac{x^{3 / 4} \sqrt{x^{2}+1}}{(3 x+2 \sin x)^{5}}
$$

and take logs:

$$
\ln y=\ln \left(\frac{x^{3 / 4} \sqrt{x^{2}+1}}{(3 x+2 \sin x)^{5}}\right)=\frac{3}{4} \ln x+\frac{1}{2} \ln \left(x^{2}+1\right)-5 \ln (3 x+2 \sin x)
$$

Now, taking derivatives with respect to x gives

$$
\frac{d}{d x} \ln y=\frac{3}{4} \frac{d}{d x} \ln x+\frac{1}{2} \frac{d}{d x} \ln \left(x^{2}+1\right)-5 \frac{d}{d x} \ln (3 x+2 \sin x)
$$

so that

$$
\frac{1}{y} \frac{d y}{d x}=\frac{3}{4 x}+\frac{2 x}{2\left(x^{2}+1\right)}-\frac{5(3+2 \cos x)}{3 x+\sin x}
$$

or in other words

$$
\frac{d}{d x} \frac{x^{3 / 4} \sqrt{x^{2}+1}}{(3 x+2 \sin x)^{5}}=\left(\frac{x^{3 / 4} \sqrt{x^{2}+1}}{(3 x+2 \sin x)^{5}}\right)\left(\frac{3}{4 x}+\frac{x}{x^{2}+1}-\frac{15+10 \cos x)}{3 x+\sin x}\right)
$$

