Calculating Limits Using Limit Laws (2.3)

Example. Suppose that

$$
f(x)= \begin{cases}\frac{x^{2}-1}{x+1}, & x \neq-1 \\ -2, & x=-1\end{cases}
$$

and that $g(x)=x-1$. Do f and g represent the same function?

Solution: Observe that $\mathscr{D}(g)=\mathbb{R}$ and also $\mathscr{D}(f)=\mathbb{R}$.
If $x \neq-1$, then $f(x)=\frac{x^{2}-1}{x+1}=x-1$ so that f, g represent the same function except at $x=-1$. However, $f(-1)=-2=g(-1)$ so these are actually the same function.

Limit Laws. The following rules make computing limits easier. Suppose that c is a constant and both the limits $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist.

- $\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
- $\lim _{x \rightarrow a}(f(x)-g(x))=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
- $\lim _{x \rightarrow a}(c f(x))=c \cdot \lim _{x \rightarrow a} f(x)$
- $\lim _{x \rightarrow a}(f(x) \cdot g(x))=\left(\lim _{x \rightarrow a} f(x)\right) \cdot\left(\lim _{x \rightarrow a} g(x)\right)$
- $\lim _{x \rightarrow a}\left(\frac{f(x)}{g(x)}\right)=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ provided that $\lim _{x \rightarrow a} g(x) \neq 0$.
- $\lim _{x \rightarrow a}(f(x))^{n}=\left(\lim _{x \rightarrow a} f(x)\right)^{n}$
- $\lim _{x \rightarrow a} c=c$ and $\lim _{x \rightarrow a} x=a$

Example. Last class we computed $\lim _{x \rightarrow 2}\left(x^{2}+2 x+1\right)=9$. Jusify this.

Solution: Using the limit laws we have:

$$
\begin{aligned}
\lim _{x \rightarrow 2}\left(x^{2}+2 x+1\right) & =\lim _{x \rightarrow 2} x^{2}+\lim _{x \rightarrow 2} 2 x+\lim _{x \rightarrow 2} 1 \\
& =\left(\lim _{x \rightarrow 2} x\right)^{2}+2 \cdot \lim _{x \rightarrow 2} x+\lim _{x \rightarrow 2} 1 \\
& =2^{2}+2(2)+1 \\
& =9
\end{aligned}
$$

Example. Use the limit laws to compute $\lim _{x \rightarrow 0} \frac{\sin x}{x}$.
Solution:

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=\frac{\lim _{x \rightarrow 0} \sin x}{\lim _{x \rightarrow 0} x}
$$

Now, $\lim _{x \rightarrow 0} \sin x=\sin 0=0$ and $\lim _{x \rightarrow 0} x=0$. Thus,

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=\frac{0}{0}=1
$$

But this is wrong. In order to use law $\# 5$, we need that $\lim _{x \rightarrow 0} x \neq 0$; we cannot divide by 0 .
\therefore We need another method to determine this limit.
Example. Compute $\lim _{x \rightarrow-2} \frac{x^{3}+2 x^{2}-1}{5-3 x}$.
Solution: Since $\lim _{x \rightarrow-2}(5-3 x)=11$, we can use law $\# 5$. Thus,

$$
\lim _{x \rightarrow-2} \frac{x^{3}+2 x^{2}-1}{5-3 x}=\frac{-8+8-1}{5+6}=-\frac{1}{11} .
$$

We can therefore formalize the following property.
Direct Substitution. If f is a polynomial functrion or a rational function, and $a \in \mathscr{D}(f)$, then

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Example. Compute

$$
\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}
$$

Example. Compute

$$
\lim _{h \rightarrow 0} \frac{(x+h)^{-1}-x^{-1}}{h}
$$

Example. Compute

$$
\lim _{h \rightarrow 0} \frac{h}{\sqrt{x+h}-\sqrt{x}} .
$$

Fact. If $f(x) \leq g(x)$ for x near a then

$$
\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} f(x)
$$

provided both exist.
Fact (Squeeze Theorem). If $f(x) \leq g(x) \leq h(x)$ for x near a and

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L
$$

then

$$
\lim _{x \rightarrow a} g(x)=L .
$$

(That is, the value of $\lim _{x \rightarrow a} g(x)$ is squeezed and must be L.)
Example. Compute

$$
\lim _{x \rightarrow 0} x^{2} \sin (1 / x) .
$$

Solution: Note that we cannot use law $\# 4$ since $\lim _{x \rightarrow 0} \sin (1 / x)$ DNE.

However, notice that for $x \neq 0,-1 \leq \sin (1 / x) \leq 1$.
Thus,

$$
-x^{2} \leq x^{2} \sin (1 / x) \leq x^{2}
$$

ie: $f(x) \leq g(x) \leq h(x)$.
Since $\lim _{x \rightarrow 0}-x^{2}=0$ and $\lim _{x \rightarrow 0} x^{2}=0$, the Squeeze Theorem tells us that

$$
\lim _{x \rightarrow 0} x^{2} \sin (1 / x)=0
$$

Fact. Suppose $\lim _{x \rightarrow a} f(x)=L$, then $\lim _{x \rightarrow a} e^{f(x)}=e^{L}$.
Note. The last problem on Assignment $\# 2$ uses the above two facts.

