Math 111.01 Summer 2003
July 16, 2003
The goal of this problem is to have you prove the chain rule.
Recall that the definition of derivative is $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$. If h is small, then we can approximate $f^{\prime}(x)$ by $\frac{f(x+h)-f(x)}{h}$.

Suppose that we know $f(x)$ and $f^{\prime}(x)$. We can use these to approximate the value of $f(x+h)$ for small h.

Solving $f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}$ for $f(x+h)$ yields $f(x+h) \approx f(x)+h f^{\prime}(x)$. This is called a linear approximation.

Example: Suppose that we want to approximate the value of $(7.1)^{2}$. We know that $7^{2}=49$. We can use the idea above by letting $f(x)=x^{2}$. Then $f^{\prime}(x)=2 x$. Use the formula above with $h=0.1$ and $x=7$. Thus, $f(x+h) \approx f(x)+h f^{\prime}(x)$ or $(x+h)^{2} \approx x^{2}+2 h x$.

Therefore, $(7+.1)^{2} \approx 7^{2}+2(.1)(7)=49+1.4=50.4$.
Use a linear approximation to prove the chain rule. That is, prove that $[f(g(x))]^{\prime}=$ $f^{\prime}(g(x)) \cdot g^{\prime}(x)$.
(Hint: Differentiate $f(g(x))$ using $g(x+h) \approx g(x)+h g^{\prime}(x)$ and $f(z+k) \approx f(z)+k f^{\prime}(z)$.)

