Functions, Derivatives, and Other Loose Ends

Math 111 Section 01

July 3, 2003

1 Functions

Definition. If f is a function represented by $f(x)$, then its graph is the set of points

$$
\{(x, f(x)): x \in \mathbb{R}\}=\{(x, y): y=f(x), x \in \mathbb{R}\}
$$

Vertical Line Test: A curve in the (x, y)-plane is the graph of a function of x if and only if no vertical line intersects the curve more than once.

Definition. An even function satisfies $f(-x)=f(x)$, while an odd function satisfies $f(-x)=-f(x)$.
Example 1. $f(x)=\sin x$ and $g(x)=x^{3}$ are both odd functions, while $h(x)=\cos x$ and $j(x)=x^{2}$ are both even functions. The functions $k(x)=\cos x+\sin x$ and $\ell(x)=x^{3}+1$, say, are neither even nor odd functions.

Definition. A function is one-to-one if no horizontal line intersects its graph more than once.
Fact 1. One-to-one functions have well-defined inverses.
If f is one-to-one with domain $\mathscr{D}(f)=A$ and range $\mathscr{R}(f)=B$, then its inverse function f^{-1} has domain $\mathscr{D}\left(f^{-1}\right)=B$ and range $\mathscr{R}\left(f^{-1}\right)=A$.

$$
f^{-1}(y)=x \Leftrightarrow y=f(x)
$$

Example 2. Suppose that f is given by $f(x)=\frac{x}{x+1}$. Then $\mathscr{D}(f)=\{x \neq-1\}$ and graphically we see that f is one-to-one. If we write $y=\frac{x}{x+1}$ and solve for x, then algorithmically we will find f^{-1}. Thus,

$$
y=\frac{x}{x+1} \Rightarrow y x+y=x \Rightarrow x(y-1)=-y \Rightarrow x=\frac{y}{1-y} .
$$

Hence $f^{-1}(x)=\frac{x}{1-x}$, and $\mathscr{D}\left(f^{-1}\right)=\mathscr{R}(f)=\{x \neq 1\}$. Note that $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$.

2 The Derivative

Recall the definition of derivative. If $f(x)$ is a function, then

- $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
- $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
- $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

Questions. What does each of these mean? Are they different definitions, or are they really just saying the same thing? Why? When should you use one instead of the others?

Definition. A function is differentiable at a if $f^{\prime}(a)$ exists.

Definition. A function is differentiable if $f^{\prime}(a)$ exists for every $a \in \mathcal{D}(f)$.
Example 3. If $f(x)=\frac{1-x}{(2+x)^{2}}$ show that $f^{\prime}(x)=\frac{-3}{(2+x)^{3}}$. What are the domains of f and f^{\prime} ? See Stewart page 161.

Notation. If $y=f(x)$, then

$$
y^{\prime}=f^{\prime}(x)=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D f(x)=D_{x} f(x)
$$

Fact 2. If a function is continuous, then it is not necessarily differentiable. For example, $f(x)=|x|$ is not differentiable at 0 , although it is differentiable everywhere else.

Fact 3. If a function is continuous, then it must be differentiable.

These do not say the same thing!

Sometimes we cannot compute the derivative at a point exactly, and instead we need to approximate the derivative by secant lines.

Example 4. See Example 2 Page 159 in Stewart. Notice the use of \approx NOT $=$, and that it is necessary to approximate from both sides.

3 How can a function fail to be differentiable?

- It can have a "sharp corner." Example: $f(x)=|x|$ at $x=0$.
- It can be discontinuous. Example: $g(x)=\left\{\begin{array}{ll}1, & x \geq 0 \\ 0, & x<0\end{array}\right.$ is discontinuous at $x=0$.
- It can have "infinite" slope. Example: $h(x)=x^{2 / 3}$ at $x=0$.

Check that these three functions are truly non-differentiable. Notice that f and h are continuous.

4 The Second Derivative

The second derivative is just the derivative of the the (first) derivative, and is denoted $f^{\prime \prime}(x)=\frac{d^{2}}{d x^{2}} f(x)$. Hence,

- $f^{\prime \prime}(a)=\lim _{x \rightarrow a} \frac{f^{\prime}(x)-f^{\prime}(a)}{x-a}$
- $f^{\prime \prime}(a)=\lim _{h \rightarrow 0} \frac{f^{\prime}(a+h)-f^{\prime}(a)}{h}$
- $f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h}$

Example 5. Show that if $f(x)=x^{3}$, then $f^{\prime \prime}(x)=6 x$.

5 Distance, Velocity, Acceleration

Suppose that the function $s(t)$ denotes the position of an object at time t. (Most likely, $0 \leq t<\infty$). If you imagine the position as a point on the real line, then $s(t)$ denotes the displacement from the origin and could very easily be negative.
[However, the distance from the origin is always positive and is given by $d(t)=|s(t)|$.]
The average velocity of the object over the time interval $\left[t_{0}, t_{0}+h\right]$ is

$$
\text { average velocity }=\frac{\text { net displacement }}{\text { time }}=\frac{s\left(t_{0}+h\right)-s\left(t_{0}\right)}{h}
$$

Notice that this is just the slope of the secant line over $\left[t_{0}, t_{0}+h\right]$ on the graph of $s(t)$.
We define the (instantaneous) velocity as

$$
\text { velocity at } t_{0}=v\left(t_{0}\right)=\lim _{h \rightarrow 0} \frac{s\left(t_{0}+h\right)-s\left(t_{0}\right)}{h}
$$

Thus, velocity is the derivative of position: $v(t)=s^{\prime}(t)$.
However, in many problems we cannot compute the velocity exactly, and must instead approximate it by the average velocity.

The average acceleration of the object over the time interval $\left[t_{0}, t_{0}+h\right]$ is

$$
\text { average acceleration }=\frac{\text { change in velocity }}{\text { time }}=\frac{v\left(t_{0}+h\right)-v\left(t_{0}\right)}{h}
$$

Notice that this is just the slope of the secant line over $\left[t_{0}, t_{0}+h\right]$ on the graph of $v(t)$.
We define the (instantaneous) acceleration as

$$
\text { acceleration at } t_{0}=a\left(t_{0}\right)=\lim _{h \rightarrow 0} \frac{v\left(t_{0}+h\right)-v\left(t_{0}\right)}{h}
$$

Thus, acceleration is the derivative of velocity and the second derivative of position: $a(t)=v^{\prime}(t)=s^{\prime \prime}(t)$.
As noted on page 167 of Stewart, the jerk is the instantaneous rate of change of acceleration, or $j(t)=a^{\prime}(t)=v^{\prime \prime}(t)=s^{\prime \prime \prime}(t)$. [A large jerk means a sudden change in acceleration.]

Example 6 (Exercise \#15 Page 148). If a ball is thrown into the air with a velocity of $40 \mathrm{ft} / \mathrm{s}$, its height (in ft) after t seconds is given by $h=40 t-16 t^{2}$. Find the velocity when $t=2$.

Solution:

$$
v(2)=\lim _{t \rightarrow 2} \frac{h(t)-h(2)}{t-2}=\lim _{t \rightarrow 2} \frac{\left(40 t-16 t^{2}\right)-(80-64)}{t-2}=\cdots .
$$

6 Asymptotes

To determine horizontal asymptotes of $f(x)$, we must investigate the behaviour as $x \rightarrow \pm \infty$.

Example 7. Determine the horizontal asymptotes of $f(x)=\frac{3 x^{2}+4}{4-x^{2}}$.

Solution: We simply compute.

$$
\begin{gathered}
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{3 x^{2}+4}{4-x^{2}}=\lim _{x \rightarrow \infty} \frac{3+4 / x^{2}}{4 / x^{2}-1}=\frac{3-0}{0-1}=-3 . \\
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{3 x^{2}+4}{4-x^{2}}=\lim _{x \rightarrow-\infty} \frac{3+4 / x^{2}}{4 / x^{2}-1}=\frac{3-0}{0-1}=-3 .
\end{gathered}
$$

Thus the line $y=-3$ is a (two-sided) horizontal asymptote.
To determine vertical asymptotes of $f(x)$, we must determine where $f(x) \rightarrow \pm \infty$. This most likely occurs at points not in the domain of f.

Example 8. Determine the vertical asymptotes of $f(x)=\frac{3 x^{2}+4}{4-x^{2}}$.
Solution: Since $f(x)=\frac{3 x^{2}+4}{4-x^{2}}=\frac{3 x^{2}+4}{(2-x)(2+x)}$, there are two points not in $\mathcal{D}(f)$, namely 2 and -2 .
We compute the one sided limits, beginning with $x=2$.

$$
\begin{gathered}
\lim _{x \rightarrow 2^{+}} \frac{3 x^{2}+4}{(2-x)(2+x)}=-\infty \\
\lim _{x \rightarrow 2^{-}} \frac{3 x^{2}+4}{(2-x)(2+x)}=\infty
\end{gathered}
$$

You should check these.
Thus the line $x=2$ is a vertical asymptote.
We now compute the one sided limits for $x=-2$.

$$
\begin{aligned}
& \lim _{x \rightarrow-2^{+}} \frac{3 x^{2}+4}{(2-x)(2+x)}=\infty \\
& \lim _{x \rightarrow-2^{-}} \frac{3 x^{2}+4}{(2-x)(2+x)}=-\infty
\end{aligned}
$$

You should check these, too.
Thus the line $x=-2$ is a vertical asymptote.

Example 9. Use information about the asymptotes, and the function itself, to sketch a graph of f, without using a calculator.

7 Other Wild Functions

Here are two interesting functions whose definitions are not entirely given via formulae, but rather through discription.

Example 10 (Greatest Integer Function). Let $\llbracket x \rrbracket$ denote the greatest integer less than or equal to x.
Thus, $\llbracket x \rrbracket$ is only integer-valued.
For example, $\llbracket 2.5 \rrbracket=2, \llbracket 5.9999987 \rrbracket=5, \llbracket 1 \rrbracket=1, \llbracket 1 / \pi \rrbracket=0, \llbracket-3.432 \rrbracket=-4$, and $\llbracket-6.5 \rrbracket=-7$.
Draw a graph of $f(x)=\llbracket x \rrbracket$. Where is f continuous? not continuous? differentiable? not differentiable?

Example 11. Suppose that $I(x)= \begin{cases}1, & x \text { is rational, } \\ 0, & x \text { is irrational. }\end{cases}$
Show that $I(x)$ is not continuous at $x=0$. You will need to argue why the definition of continuity fails at 0 , as opposed to "actually computing."

In fact, your argument shows that $I(x)$ is not continuous at any point. It is nowhere continuous!

