Math 111.01 Summer 2003 Assignment #6 Solutions

1. Practice problems.

Solutions may be found in the back of the text, or in the Student Solutions Manual.

2. Extra practice.

Solutions may be found in the back of the text, or in the Student Solutions Manual. Section 5.3 #12 Answer: 20/3 Section 5.3 #14 Answer: 0 Section 5.3 #16 Answer: 7/10 Section 5.3 #18 Answer: 2 Section 5.3 #20 Answer: 86/7 Section 5.3 #22 Answer: $3/2 + \ln 2$ Section 5.3 #24 Answer: $2e^5 + 4\sin 5 - 2 \approx 290.99$ Section 5.3 #26 Answer: 33/4Section 5.3 #30 Answer: $-1 + 2/3 \cdot \sqrt{3}$

3. Problems to hand in.

Section 4.9

#6. Since $f(x) = \sqrt[3]{x^2} - \sqrt{x^3} = x^{2/3} - x^{3/2}$, the most general antiderivative is

$$F(x) = \frac{1}{5/3}x^{5/3} - \frac{1}{5/2}x^{5/2} + C = \frac{3}{5}x^{5/3} - \frac{2}{5}x^{5/2} + C.$$

#10. Since $f(x) = 3e^x + 7 \sec^2 x$, the most general antiderivative is

$$F(x) = 3e^x + 7\tan x + C_n, \text{ on the interval } (n\pi - \frac{\pi}{2}, n\pi + \frac{\pi}{2}).$$

Notice that in this case, there are many different "pieces" in the antiderivative. Each "piece" may have a different constant and these will all be different antiderivative functions.

#12. Since $f(x) = \frac{x^2 + x + 1}{x} = x + 1 + x^{-1}$, the most general antiderivative is

$$F(x) = \frac{1}{2}x^2 + x + \ln x + C.$$

#20. If $f'(x) = 4/\sqrt{1-x^2}$ then,

$$f(x) = 4 \arcsin x + C$$
$$f(\frac{1}{2}) = 4 \arcsin(\frac{1}{2}) + C = 4(\frac{\pi}{6}) + C.$$

Since $f(\frac{1}{2}) = 1$, we have

$$\frac{2\pi}{3} + C = 1 \Rightarrow C = 1 - \frac{2\pi}{3},$$

so $f(x) = 4 \arcsin x + 1 - \frac{2\pi}{3}$.

$$f''(x) = 3e^x + 5\sin x \Rightarrow f'(x) = 3e^x - 5\cos x + C$$

and since f'(0) = 2,

$$3-5+C=2 \Rightarrow C=4$$

Therefore, $f'(x) = 3e^x - 5\cos x + 4$. Next, we take another antiderivative.

$$f(x) = 3e^x - 5\sin x + 4x + D$$

Since f(0) = 1, $3 + D = 1 \Rightarrow D = -2$. This means that $f(x) = 3e^x - 5\sin x + 4x - 2$. #36.

$$a(t) = v'(t) = 5 + 4t - 2t^2 \Rightarrow v(t) = 5t + 2t^2 - \frac{2}{3}t^3 + C.$$
$$v(0) = 5(0) + 2(0)^2 - \frac{2}{3}(0^3) + C = 3 \Rightarrow C = 3$$

so,

$$v(t) = s'(t) = 5t + 2t^3 - \frac{2}{3}t^3 + 3 \Rightarrow s(t) = \frac{5}{2}t^2 + \frac{2}{3}t^3 - \frac{1}{6}t^4 + 3t + D$$
$$s(0) = 0 + 0 + 0 + 0 + D = 10 \Rightarrow D = 10$$

Therefore, the particle's position after t seconds is given by $s(t) = \frac{5}{2}t^2 + \frac{2}{3}t^3 - \frac{1}{6}t^4 + 3t + 10.$

#40. Consider first Example 7 from the text and see that the distance function for the first ball can be written as $s_1(t) = -16t^2 + 48t + 432$. For the second ball, we find the equation for the position function by antidifferentiation.

$$a_{2}(t) = -32$$

$$\Rightarrow v_{2}(t) = -32t + C$$
So, $v_{2}(1) = -32(1) + C = 24$

$$\Rightarrow C = 56$$

$$v_{2}(t) = -32t + 56$$

$$s_{2}(t) = -16t^{2} + 56t + D$$
So, $s_{2}(1) = -16(1)^{2} + 56(1) + D = 432$

$$\Rightarrow D = 392$$

$$s_{2}(t) = -16t^{2} + 56t + 392$$

When the balls pass each other, $s_1(t) = s_2(t)$. We set these expressions equal and solve for t to find the time they are passing each other:

$$-16t^2 + 48t + 432 = -16t^2 + 56t + 392 \iff 8t = 40 \iff t = 5$$
 seconds.

Section 5.1

#2. See problem in text for graph of the function.

- **a**. Find the area from x = 0 to x = 12 by splitting into 6 subintervals: each of the 6 subintervals has width 12/6 = 2.
 - (i) Using left endpoints: $L_6 = 2 \times 9 + 2 \times 8.75 + 2 \times 8.25 + 2 \times 7.3 + 2 \times 6 + 2 \times 4 = 86.6$.

#24.

- (ii) Using right endpoints: $R_6 = 2 \times 8.75 + 2 \times 8.25 + 2 \times 7.3 + 2 \times 6 + 2 \times 4 + 2 \times 1 = 70.6$.
- (iii) Using midpoints: $M_6 = 2 \times 8.9 + 2 \times 8.5 + 2 \times 7.8 + 2 \times 6.7 + 2 \times 5 + 2 \times 2.9 = 79.6$.
- **b**. Since f is decreasing, L_6 is an overestimate.
- **c**. Since f is decreasing, R_6 is an underestimate.
- **d**. The best estimate is given by M_6 since, in this case, the area of each rectangle is closer to the actual area than in the case of the overestimates and understimates in (i) and (ii).
- #12. The height of *Endeavour* 62 seconds after liftoff is given by:

$$R_{6} = v(10)(10 - 0) + v(15)(15 - 10) + v(20)(20 - 15) + v(32)(32 - 20) + v(59)(59 - 32) + v(62)(62 - 59) = 185 \times 10 + 319 \times 5 + 447 \times 5 + 742 \times 12 + 1325 \times 27 + 1445 \times 3 = 54694,$$

$$L_6 = v(0)(10 - 0) + v(10)(15 - 10) + v(15)(20 - 15) + v(20)(32 - 20) + v(32)(59 - 32) + v(59)(62 - 59) = 0 \times 10 + 185 \times 5 + 319 \times 5 + 447 \times 12 + 742 \times 27 + 1325 \times 3 = 31893.$$

Averaging the two estimates, we get 43 293.5 feet.

#14. We can use right endpoints (and get an overestimate, why?) or left endpoints (and get an underestimate, why?). Let's then use midpoints this time. Split the time interval into 6 equal pieces of 5 seconds, that is, 5/3600 hours.

$$M_{6} = \frac{5}{3600} \times [v(2.5) + v(7.5) + v(12.5) + v(17.5) + v(22.5) + v(27.5)]$$

= $\frac{5}{3600} \times [31.25 + 66 + 88 + 103.5 + 113.75 + 119.25]$
= $\frac{5}{3600} (521.75) = 0.725$ km.

#16. The area under $f(x) = \frac{\ln x}{x}$ from x = 3 to x = 10 is given by the formula

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} [f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x]$$

where $\Delta x = \frac{10-3}{n}$, and $x_i = 3 + \frac{i \cdot 7}{n}$, for i = 1, 2, ..., n. Therefore, we get

$$A = \lim_{n \to \infty} \left[\frac{\ln\left(3 + \frac{7}{n}\right)}{3 + \frac{7}{n}} \cdot \frac{7}{n} + \frac{\ln\left(3 + \frac{2 \cdot 7}{n}\right)}{3 + \frac{2 \cdot 7}{n}} \cdot \frac{7}{n} + \dots + \frac{\ln\left(10\right)}{10} \cdot \frac{7}{n} \right] = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{7\ln\left(3 + \frac{7i}{n}\right)}{3n + 7i}.$$

Section 5.2

#6. a. Using the right endpoints to approximate $\int_{-3}^{3} g(x) dx$, we have

$$\sum_{i=1}^{6} g(x_i) \Delta x = 1[g(-2) + g(-1) + g(0) + g(1) + g(2) + g(3)]$$

$$\approx 1 - 0.5 - 1.5 - 1.5 - 0.5 + 2.5 = -0.5.$$

b. Using the left endpoints to approximate $\int_{-3}^{3} g(x) dx$, we have

$$\sum_{i=1}^{6} g(x_{i-1}) \Delta x = \sum_{i=0}^{5} g(x_i) \Delta x = 1[g(-3) + g(-2) + g(-1) + g(0) + g(1) + g(2)]$$

$$\approx 2 + 1 - 0.5 - 1.5 - 1.5 - 0.5 = -1.$$

c. Using the midpoints of each subinterval to approximate $\int_{-3}^{3} g(x) dx$, we have

$$\sum_{i=1}^{6} g(\overline{x}_i) \Delta x = \sum_{i=1}^{6} g\left(\frac{x_i + x_{i-1}}{2}\right) \Delta x$$
$$= 1[g(-2.5) + g(-1.5) + g(-0.5) + g(0.5) + g(1.5) + g(2.5)]$$
$$\approx 1.5 + 0 - 1 - 1.75 - 1 + 0.5 = -1.75.$$

#18. On [1,5],

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{e^{x_i}}{1+x_i} \Delta x = \int_1^5 \frac{e^x}{1+x} \, dx.$$

#24. Letting $\Delta x = 5/n$ and $x_i = 5i/n$, we have

$$\int_{0}^{5} (1+2x^{3}) dx = \lim_{n \to \infty} \sum_{i=1}^{n} \left(1+2\left(\frac{5i}{n}\right)^{3} \right) \left(\frac{5}{n}\right) = \lim_{n \to \infty} \left(\frac{5}{n}\right) \sum_{i=1}^{n} \left(1+2 \cdot \frac{125i^{3}}{n^{3}} \right)$$
$$= \lim_{n \to \infty} \left(\frac{5}{n}\right) \left(1 \cdot n + 2 \cdot \frac{125}{n^{3}} \sum_{i=1}^{n} i^{3} \right) = \lim_{n \to \infty} \left(\frac{5}{n}\right) \left(1 \cdot n + 2 \cdot \frac{125}{n^{3}} \frac{(n+1)^{2}}{n^{2}} \right)$$
$$= \lim_{n \to \infty} \left(5+312.5 \left(1+\frac{1}{n}\right)^{2} \right) = 5+312.5 = 317.5$$

#36. $\int_0^3 |3x-5| dx$ can be interpreted as the area under the graph of the function f(x) = |3x-5| between x = 0 and x = 3. This is equal to the area of the two triangles, so

$$\int_0^3 |3x - 5| \, dx = \frac{1}{2} \cdot \frac{5}{3} \cdot 5 + \frac{1}{2} \cdot \left(3 - \frac{5}{3}\right) \cdot 4 = \frac{41}{6}.$$

#42. By rule 5 on page 365, $\int_0^4 f(t) dt = \int_0^1 f(t) dt + \int_1^3 f(t) dt - \int_3^4 f(t) dt$. Thus,

$$\int_{1}^{3} f(t) dt = \int_{0}^{4} f(t) dt - \int_{3}^{4} f(t) dt - \int_{0}^{1} f(t) dt = (-6) - (1) - (2) = -9.$$

#46. Since $m \leq f(x) \leq M$ for all x, by property 8 on page 366, we have

$$2m \le \int_0^2 f(x) \ dx \le 2M$$

Section 5.3

- #6. The slope of the trail is the rate of change of the elevation E, so f(x) = E'(x). By the Total Change Theorem, $\int_{3}^{5} f(x) dx = \int_{3}^{5} E'(x) dx = E(5) E(3)$ is the change in the elevation E between x = 3 miles and x = 5 miles from the start of the trail.
- #10. Since $-x^{-1}$ is an antiderivative of x^{-2} , by the Evaluation Theorem we have

$$\int_{1}^{2} x^{-2} dx = -x^{-1} \Big|_{1}^{2} = (-2^{-1}) - (-1^{-1}) = \frac{1}{2}.$$

#28. Since e^x is an antiderivative of e^x , by the Evaluation Theorem we have

$$\int_{\ln 3}^{\ln 6} 8e^x \, dx = 8e^x \Big|_{\ln 3}^{\ln 6} = 8e^{\ln 6} - 8e^{\ln 3} = 48 - 24 = 24.$$

#32. Since $\arcsin x = \sin^{-1} x$ is an antiderivative of $\frac{1}{\sqrt{1-x^2}}$, by the Evaluation Theorem we have

$$\int_0^{0.5} \frac{dx}{\sqrt{1-x^2}} = \sin^{-1} x \Big|_0^{0.5} = \sin^{-1} 0.5 - \sin^{-1} 0 = \frac{\pi}{6} - 0 = \frac{\pi}{6}$$

#34. Since the absolute value of a is defined by $|a| = \begin{cases} a, \text{ if } a \ge 0, \\ -a, \text{ if } a < 0, \end{cases}$ we must determine where $x - x^2$ is both positive and negative. Since $x - x^2 = x(1 - x)$, we see that if x > 1 it is negative, if x < 0 it is also negative, and if 0 < x < 1 it is positive. We now apply

it is negative, if x < 0 it is also negative, and if 0 < x < 1 it is positive. We now apply property 5 (page 365) of definite integrals in order to handle the absolute value, splitting up at the places where $x - x^2$ changes from positive to negative. Hence,

$$\int_{-1}^{2} |x - x^{2}| dx = \int_{-1}^{0} |x - x^{2}| dx + \int_{0}^{1} |x - x^{2}| dx + \int_{1}^{2} |x - x^{2}| dx$$
$$= \int_{-1}^{0} -(x - x^{2}) dx + \int_{0}^{1} (x - x^{2}) dx + \int_{1}^{2} -(x - x^{2}) dx.$$

Since $\frac{1}{2}x^2 - \frac{1}{3}x^3$ is an antiderivative of $x - x^2$, by the Evaluation Theorem we have

$$\int_{-1}^{0} (x - x^2) \, dx + \int_{0}^{1} -(x - x^2) \, dx + \int_{1}^{2} (x - x^2) \, dx$$
$$= -\left(\frac{1}{2}x^2 - \frac{1}{3}x^3\right)\Big|_{-1}^{0} + \left(\frac{1}{2}x^2 - \frac{1}{3}x^3\right)\Big|_{0}^{1} + -\left(\frac{1}{2}x^2 - \frac{1}{3}x^3\right)\Big|_{1}^{2}$$
$$= \frac{7}{3} + \frac{3}{2} - 2$$
$$= \frac{11}{6}.$$

#52. As on page 375, the displacement is given by

$$\begin{split} \int_{1}^{6} v(t) \, dt &= \int_{1}^{6} t^2 - 2t - 8 \, dt = \left(\frac{1}{3}t^3 - t^2 - 8t\right) \Big|_{1}^{6} = \left(\frac{1}{3}6^3 - 6^2 - 8 \cdot 6\right) - \left(\frac{1}{3}1^3 - 1^2 - 8 \cdot 1\right) \\ &= (72 - 36 - 48) - \left(\frac{1}{3} - 1 - 8\right) \\ &= -\frac{10}{3}. \end{split}$$

Thus the displacement during the time interval [1, 6] was -10/3 m.

As on page 375, the total distance travelled is given by $\int_{1}^{6} |v(t)| dt = \int_{1}^{6} |t^2 - 2t - 8| dt$. As in problem #34, we need to consider the cases where this is positive and where this is negative. Since $t^2 - 2t - 8 = (t - 4)(t + 2)$, we see that for $1 \le t \le 4$, $t^2 - 2t - 8$ is negative, while for $4 \le t \le 6$, $t^2 - 2t - 8$ is positive. Thus,

$$\int_{1}^{6} |t^{2} - 2t - 8| dt = \int_{1}^{4} -(t^{2} - 2t - 8) dt + \int_{4}^{6} t^{2} - 2t - 8 dt$$
$$= -\left(\frac{1}{3}t^{3} - t^{2} - 8t\right)\Big|_{1}^{4} + \left(\frac{1}{3}t^{3} - t^{2} - 8t\right)\Big|_{4}^{6}$$
$$= \frac{98}{3}.$$

Therefore, the total distance travelled during the time interval [1, 6] was 98/3 m.

Section 5.4

#6. The function g(x) represents the area in the t, y-plane under the curve $y = 2 + \cos(t)$, above the t-axis, between the vertical lines $t = \pi$ and t = x. (Note that x is used for something else here, other than the usual dependent variable in cartesian coordinates.)

a. By FTC 1,
$$g(x) = \int_{\pi}^{x} (2 + \cos t) dt$$
, so $g'(x) = f(x) = (2 + \cos x)$.

b. By FTC 2, $g(x) = \int_{\pi}^{x} (2 + \cos t) dt = (2t + \sin t) \Big|_{\pi}^{x} = 2x + \sin x - 2\pi$. Thus, $g'(x) = 2 + \cos x$.

#12. Let $u = x^2$. Then $\frac{du}{dx} = 2x$, and $\frac{dh}{dx} = \frac{dh}{du}\frac{du}{dx}$, by the Chain Rule. So

$$\frac{dh}{dx} = \frac{d}{dx} \int_0^{x^2} \sqrt{1+r^3} \, dr = \frac{d}{du} \int_0^u \sqrt{1+r^3} \, dr \cdot \frac{du}{dx} = \sqrt{1+u^3}(2x) = 2x\sqrt{1+x^6}.$$

#14. Similarly to #12, let $u = e^x$. Then $\frac{du}{dx} = e^x$, and $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$, by the Chain Rule. So

$$\frac{dy}{dx} = \frac{d}{dx} \int_{e^x}^0 \sin^3(t) \, dt = \frac{d}{du} \int_u^0 \sin^3(t) \, dt \cdot \frac{du}{dx} \\ = -\frac{d}{du} \int_0^u \sin^3(t) \, dt \cdot \frac{du}{dx} = -\sin^3(u)(e^x) = -e^x \sin^3(e^x)$$

- **#18.** For the curve to be concave up, we need y'' > 0. $y(x) = \int_o^x \frac{1}{1+t+t^2} dt$. So, by FTC 1, $y'(x) = \frac{1}{1+x+x^2}$, and $y''(x) = -\frac{1+2x}{(1+x+x^2)^2}$. For y''(x) to be positive, we need -(1+2x) to be positive (since the denominator is positive for all x). this occurs only when x < -1/2. Thus, y(x) is convcave upward on $(-\infty, -1/2)$.
- **#24.** a. If x < 0, then $g(x) = \int_0^x f(t) dt = \int_0^x 0 dt = 0$. If $0 \le x \le 1$, then $g(x) = \int_0^x f(t) dt = \int_0^x t dt = \left(\frac{1}{2}t^2\right)\Big|_0^x = \frac{1}{2}x^2$. If 1 < x < 2, then $g(x) = \int_0^1 f(t) dt + \int_1^x f(t) dt = g(1) + \int_1^x (2-t) dt = \frac{1}{2} + \left(2t \frac{1}{2}t^2\right)\Big|_0^x = 2x \frac{1}{2}x^2 1$. If x > 2, then $g(x) = \int_0^x f(t) dt = \int_0^2 f(t) dt + \int_2^x f(t) dt = g(2) + \int_2^x 0 dt = g(2) = 1$. Therefore,

$$g(x) = \begin{cases} 0, & \text{if } x < 0, \\ \frac{1}{2}x^2, & \text{if } 0 \le x \le 1, \\ 2x - \frac{1}{2}x^2 - 1, & \text{if } 1 < x \le 2, \\ 1, & \text{if } x > 2. \end{cases}$$

b. The graphs of f and g are shown below.

c. f is not differentiable at its corners, namely at x = 0, x = 1, and x = 2. f is differentiable on $(-\infty, 0) \cup (0, 1) \cup (1, 2) \cup (2, \infty)$. However, g is differentiable everywhere; you just need to check g'(x) at x = 0, 1, 2. Notice that this is merely the same thing as checking the continuity of f at x = 0, x = 1, and x = 2. f is continuous at all of those points, so g is differentiable there.