Math 111.01 Summer 2003
Assignment \#5 Solutions

1. I hope you did!
2. Practice problems.

Solutions may be found in the back of the text, or in the Student Solutions Manual.
3. Problems to hand in.

Section 4.5

\#4. a. Type $\left[0^{0}\right]$ indeterminate form.
b. $\lim _{x \rightarrow a}[f(x)]^{p(x)}=0$.
c. Type $\left[1^{\infty}\right]$ indeterminate form.
d. Type $\left[\infty^{0}\right]$ indeterminate form.
e. $\lim _{x \rightarrow a}[p(x)]^{q(x)}=\infty$.
f. $\lim _{x \rightarrow a} \sqrt[q(x)]{p(x)}=\lim _{x \rightarrow a}[p(x)]^{1 / q(x)}$, so this is a type $\left[\infty^{0}\right]$ indeterminate form.
\#10. $\lim _{x \rightarrow \pi} \frac{\tan x}{x}=\frac{0}{\pi}=0$, by continuity. (L'Hôpital's rule does NOT apply here!)
\#14. $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{3}}$ is an indeterminate form of type $\left[\frac{0}{0}\right]$, so we may apply L'Hôpital's rule. In fact, we must apply it three times:

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{3}}=\lim _{x \rightarrow \infty} \frac{e^{x}}{3 x^{2}}=\lim _{x \rightarrow \infty} \frac{e^{x}}{6 x}=\lim _{x \rightarrow \infty} \frac{e^{x}}{6}=\infty
$$

\#34. $\lim _{x \rightarrow \infty}\left(1+\frac{a}{x}\right)^{b x}$ is a $\left[1^{\infty}\right]$ type indeterminate form. We thus note that $\lim _{x \rightarrow \infty}\left(1+\frac{a}{x}\right)^{b x}=$ $e^{\lim _{x \rightarrow \infty} b x \ln \left(1+\frac{a}{x}\right)}$. But $\lim _{x \rightarrow \infty} b x \ln \left(1+\frac{a}{x}\right)$ is a $[\infty \cdot 0]$ type indeterminate form, so we compute

$$
\lim _{x \rightarrow \infty} b x \ln \left(1+\frac{a}{x}\right)=b \lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{a}{x}\right)}{1 / x}=b \lim _{x \rightarrow \infty} \frac{\frac{1}{1+\frac{a}{x}} \cdot \frac{-a}{x^{2}}}{-1 / x^{2}}=b \lim _{x \rightarrow \infty} \frac{a}{1+\frac{a}{x}}=a b .
$$

Thus,

$$
\lim _{x \rightarrow \infty}\left(1+\frac{a}{x}\right)^{b x}=e^{a b}
$$

\#44. Note first that $x e^{-x^{2}}$ has no vertical asymptotes because it is continuous for all x. To find horizontal asymptotes, we must compute $\lim _{x \rightarrow \infty} x e^{-x^{2}}$ and $\lim _{x \rightarrow-\infty} x e^{-x^{2}}$. These are both $[\infty \cdot 0]$ forms. Using L'Hôpital's rule, we find that

$$
\lim _{x \rightarrow \pm \infty} x e^{-x^{2}}=\lim _{x \rightarrow \pm \infty} \frac{x}{e^{x^{2}}}=\lim _{x \rightarrow \pm \infty} \frac{1}{2 x e^{-x^{2}}}=0
$$

Thus the line $y=0$ is the horizontal asymptote.
\#54. a. $\lim _{t \rightarrow \infty} v=\lim _{t \rightarrow \infty} \frac{m g}{c}\left(1-e^{-c t / m}\right)=\frac{m g}{c}$, since $\lim _{t \rightarrow \infty}-c t / m=-\infty$. This means that the limiting velocity as time goes on is $\frac{m g}{c}$.
b. $\lim _{m \rightarrow \infty} v=\lim _{m \rightarrow \infty} \frac{m g}{c}\left(1-e^{-c t / m}\right)=\frac{m g}{c}$ is a $[\infty \cdot 0]$ type indeterminate form. We use L'Hôpital's rule to compute $\lim _{m \rightarrow \infty} \frac{m g}{c}\left(1-e^{-c t / m}\right)=\frac{g}{c} \lim _{m \rightarrow \infty} \frac{\left(1-e^{-c t / m}\right)}{1 / m}$
$=\frac{g}{c} \lim _{m \rightarrow \infty} \frac{-c t / m^{2} e^{-c t / m}}{-1 / m^{2}}=g t \lim _{m \rightarrow \infty} e^{-c t / m}=g t$. Thus for very heavy objects, the velocity increases approximately linearly with time and is not dependent on mass.

Section 4.6

\#4. Let x be any number in $(0, \infty)$, i.e., x is any positive number. The sum of x and its reciprocal is $f(x)=x+\frac{1}{x}$, so we seek to minimize f. We will have to apply the first derivative test for absolute minima. We first compute $f^{\prime}(x)=1-\frac{1}{x^{2}}$. Setting $f^{\prime}(x)=0$, we find that $1-\frac{1}{x^{2}}=0$, or $1=\frac{1}{x^{2}}$, or $x=1$. (We can ignore the root $x=-1$ since we only care about positive values of x.) We easily find that $f^{\prime}(x)<0$ for all $0<x<1$, so f is decreasing for $0<x<1$. Since $f^{\prime}(x)>0$ for $x>1, f$ is increasing for $x>1$. By the first derivative test, $f(1)$ is thus an absolute minimum of f on $(0, \infty)$, and 1 is thus our desired positive number.
\#8. a. Each of the boxes in Figure 1 can be constructed by cutting four $z \times z$ corners out of a 3×3 piece of cardboard. Box 1 has volume $2 \times 2 \times .5=2$, Box 2 has volume $1 \times 1 \times 1=1$, and Box 3 has volume $.5 \times .5 \times 2=.5$. It appears that the maximum volume will be achieved by taking a short, flat box, so we try a few more possibilities: $1.5 \times 1.5 \times .75=1.68 \ldots ; 2.5 \times 2.5 \times .25=1.56 \ldots ; 2.25 \times 2.25 \times .375=1.89 \ldots$ Thus we guess that the maximum volume will be around 2 .

Figure 1: figure for \#8 a
b. See Figure 2 on the following page.
c. $V(x, z)=x^{2} z$.
d. $x+2 z=3$, so $x=3-2 z$.
e. $V(z)=(3-2 z)^{2} z=\left(9-12 z+4 z^{2}\right) z=9 z-12 z^{2}+4 z^{3}$.
f. We first note that $0 \leq z \leq 1.5$, so we shall use the closed interval method to find the minimum of V on this interval. $V^{\prime}(z)=9-24 z+12 z^{2}=3\left(4 z^{2}-8 z+3\right)=$

Figure 2: figure for $\# 8 \mathrm{~b}$
$3(2 z-3)(2 z-1)$, which has zeros at $z=1 / 2$ and $z=3 / 2$. We thus compute $V(0)=0, V(1 / 2)=2^{2} \cdot .5=2$, and $V(3 / 2)=0$. By the closed interval method, the maximum volume is $V(1 / 2)=2 \mathrm{ft}^{3}$.
\#10. Let x represent the length and width of the square base of the box, and let z be its height as in the previous problem. The volume is $32,000 \mathrm{~cm}^{3}=x^{2} z$, and the amount of material used is the surface area, that is, $S(x, z)=x^{2}+4 x z$. Using the volume constraint, we find that $z=\frac{32000}{x^{2}}$, so we may eliminate z in S to find $S(x)=x^{2}+\frac{128,000}{x}$. We also note that x may be any positive number, so we will use the first derivative test for absolute maxima and minima to minimize $S . S^{\prime}(x)=2 x-\frac{128,000}{x^{2}}$. Setting $S(x)=0$, we find that $2 x=\frac{128,000}{x^{2}}$, or $x^{3}=64,000$ or $x=40 \mathrm{~cm}$. We see that $S^{\prime}(x)<0$ for $x<40$ and $S^{\prime}(x)>0$ for $x>40$, so that $S(40)$ is an absolute minimum by the first derivative test for absolute extrema. To complete the problem, we find $z=\frac{32000}{40^{2}}=20 \mathrm{~cm}$, so the base should be 40 cm on each side and the height 20 cm .
\#12. Let x be the length of the shorter side of the base, so the other side of the base has length $2 x$. Also, let z be the height of the box. The volume is given by $2 x \cdot x \cdot z=10 \mathrm{~m}^{3}$. Also, to get the cost, we add 10 times the surface area of the bottom and 6 times the total surface area of the sides. That is, $C(x, z)=10(2 x \cdot x)+6(2 \cdot 2 x z+2 \cdot x z)=20 x^{2}+36 x z$. We then solve for z in our volume constraint to find that $z=\frac{5}{x^{2}}$. Substituting into the cost equation, we find that $C(x)=20 x^{2}+\frac{180}{x}$. x may be any positive number here, so we will use the first derivative test for absolute extrema. $C^{\prime}(x)=40 x-\frac{180}{x^{2}}$. Setting $C=0$, we find that $40 x=\frac{180}{x^{2}}$, or $x^{3}=\frac{180}{40}=\frac{9}{2}$. Thus $x=\sqrt[3]{\frac{9}{2}}$ is a critical point of C. We see that $C^{\prime}(x)<0$ if $x<\sqrt[3]{\frac{9}{2}}$ and $C^{\prime}(x)>0$ if $x>\sqrt[3]{\frac{9}{2}}$, so the absolute minimum of $C(x)$ is about $\$ \sqrt[3]{\frac{9}{2}}=\$ 163.54$ by the first derivative test.
\#16. See Figure 3 on the following page for a diagram. The rectangle displayed has an area of $A(x, y)=2 x y$. Since $y=8-x^{2}$, we substitute to find $A(x)=2 x\left(8-x^{2}\right)=16 x-2 x^{3}$. We also note that since we require the rectangle to be above the x-axis, we must have $0 \leq x \leq \sqrt{8}$. Thus we can use the closed interval method to find the absolute minimum of $A . A^{\prime}(x)=16-6 x^{2}$, which is 0 when $16=6 x^{2}$ or $x=\sqrt{\frac{8}{3}} . A(0)=A(\sqrt{8})=0$, and $A\left(\sqrt{\frac{8}{3}}\right) \approx 17.4$, so the absolute maximum occurs at $x=\sqrt{\frac{8}{3}}$. At this point, $y=8-8 / 3=$ $16 / 3$, so the rectangle giving the largest area is $2 \sqrt{\frac{8}{3}} \times 16 / 3$.

Figure 3: figure for $\# 16$
\#32. We first note that we can find the fuel consumption per mile at a given speed by dividing the fuel consumption per hour by the speed: $G(v)=\frac{c}{v}$. In order to optimize G, we should take its first derivative and set it equal to 0 , that is, $G^{\prime}(v)=\frac{v \frac{d c}{d v}-c \frac{d v}{d v}}{v^{2}}=0$. Multiplying through by v^{2} and noting that $\frac{d v}{d v}=1$, we have $v \frac{d c}{d v}-c=0$, or $\frac{d c}{d v}=\frac{c}{v}$. We next note that the slope of a line passing through the origin and through any point (v, c) on the graph given in the book is $\frac{c}{v}$. Since we are looking for a point where $\frac{c}{v}=\frac{d c}{d v}$, we may equivalently look for a point where the line passing through (v, c) and the origin (which has slope $\frac{c}{v}$, recall) is one and the same as the tangent line to the curve $c=c(v)$ at the point (v, c). Doing this approximately and graphically gives us $v \approx 53 \mathrm{mph}$.

Section 4.8

\#4. a. If $x_{1}=0$, then x_{2} is negative, and x_{3} is even more negative. The sequence of approximations does not converge, so Newton's method fails.
b. If $x_{1}=1$, then the tangent line is horizontal and Newton's method fails.
c. If $x_{1}=3$, then $x_{2}=1$, and we have the same situation as in (b). Newton's method fails again.
d. If $x_{1}=4$, then the tangent line is horizontal and Newton's method fails.
e. If $x_{1}=5$, then x_{2} is greater than $6, x_{3}$ gets closer to 6 , and the sequence of approximations converges to 6 . Newton's method succeeds!
\#6. If $f(x)=x^{3}-x^{2}-1$, then $f^{\prime}(x)=3 x^{2}-2 x$, so that

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{3}-x_{n}^{2}-1}{3 x_{n}^{2}-2 x_{n}} .
$$

Now, if $x_{1}=1$, then

$$
x_{2}=1-\frac{1-1-1}{3-2}=2,
$$

and

$$
x_{3}=2-\frac{2^{3}-2^{2}-1}{3 \cdot 2^{2}-2 \cdot 2}=1.625 .
$$

\#16. From the graph below, we see that the only root of this equation is near 0.6. Since $f(x)=\cos ^{3}\left(x^{2}+1\right)-x^{3}$, we have $f^{\prime}(x)=-2 x \sin \left(x^{2}+1\right)-3 x^{2}$, so that

$$
x_{n+1}=x_{n}-\frac{\cos ^{3}\left(x_{n}^{2}+1\right)-x_{n}^{3}}{-2 x_{n} \sin \left(x_{n}^{2}+1\right)-3 x_{n}^{2}} .
$$

Taking $x_{1}=0.6$, we get $x_{2} \approx 0.58688855, x_{3} \approx 0.59698777 \approx x_{4}$. To eight decimal places, the root of the equation is 0.59698777 .

\#20. (a) If $f(x)=\frac{1}{x}-a$, then $f^{\prime}(x)=-\frac{1}{x^{2}}$ so that

$$
x_{n+1}=x_{n}-\frac{x_{n}^{-1}-a}{-x_{n}^{-2}}=x-n+x_{n}-x x_{n}^{2}=2 x-n-a x_{n}^{2} .
$$

(b) Using (a) with $a=1000$ and $x_{1}=1 / 2=0.5$, we get $x_{2}=0.5754, x_{3} \approx 0.588485$, and $x_{4} \approx 0.588789 \approx x_{5}$. Thus,

$$
\frac{1}{1.6984} \approx 0.588789
$$

\#24. If $f(x)=x^{2}+\sin x$, then $f^{\prime}(x)=2 x+\cos x$. $f^{\prime}(x)$ exists for all x, so to find the minimum of f we can examine the zeroes of f^{\prime}. From the graph of f^{\prime}, we see that a good choice for x_{1} is $x-1=-0.5$. Use $g(x)=2 x+\cos x$ and $g^{\prime}(x)=2-\sin x$ to obtain $x_{2} \approx-0.450627$, $x_{3} \approx-0.450184 \approx x_{4}$. Since $f^{\prime \prime}(x)=2-\sin x>0$ for all $x, f(-0.450184) \approx-0.232466$ is the absolute minimum.
4. To show $\lim _{x \rightarrow 0}(\sec x)^{1 / x^{2}}=\sqrt{e}$ we proceed as follows:

$$
\begin{aligned}
\lim _{x \rightarrow 0}(\sec x)^{1 / x^{2}} & =\lim _{x \rightarrow 0} e^{\ln (\sec x)^{1 / x^{2}}} \\
& =e^{\lim _{x \rightarrow 0} \ln (\sec x)^{1 / x^{2}}} \\
& =e^{\lim _{x \rightarrow 0} \frac{1}{x^{2}} \ln (\sec x)} \\
& =e^{\lim _{x \rightarrow 0} \frac{\ln (\sec x)}{x^{2}}} .
\end{aligned}
$$

Now, we must compute $\lim _{x \rightarrow 0} \frac{\ln (\sec x)}{x^{2}}$ which is indeterminant $\left[\frac{0}{0}\right]$, so that we can use L'Hôpital's rule.

$$
\lim _{x \rightarrow 0} \frac{\ln (\sec x)}{x^{2}}=\lim _{x \rightarrow 0} \frac{\frac{\sec x \tan x}{\sec x}}{2 x}=\lim _{x \rightarrow 0} \frac{\tan x}{2 x}=\lim _{x \rightarrow 0} \frac{\sec ^{2} x}{2}=\frac{1}{2} .
$$

Hence,

$$
\lim _{x \rightarrow 0}(\sec x)^{1 / x^{2}}=e^{1 / 2}=\sqrt{e}
$$

5. To compute $\lim _{x \rightarrow a}\left(\frac{\sin x}{\sin a}\right)^{1 /(x-a)}$ which is indeterminant $\left[1^{\infty}\right]$, we proceed as above.

$$
\begin{aligned}
\lim _{x \rightarrow a}\left(\frac{\sin x}{\sin a}\right)^{1 /(x-a)} & =\lim _{x \rightarrow a} e^{\ln \left(\frac{\sin x}{\sin a}\right)^{1 /(x-a)}} \\
& =e^{\lim _{x \rightarrow a} \ln \left(\frac{\sin x}{\sin a}\right)^{1 /(x-a)}} \\
& =e^{\lim _{x \rightarrow a} \frac{1}{(x-a)} \ln \left(\frac{\sin x}{\sin a}\right)} \\
& =e^{\lim _{x \rightarrow a} \frac{\ln \left(\frac{\sin x}{\sin a}\right)}{x-a}}
\end{aligned}
$$

Now, we must compute $\lim _{x \rightarrow a} \frac{\ln \left(\frac{\sin x}{\sin a}\right)}{x-a}$ which is indeterminant $\left[\frac{0}{0}\right]$, so that we can use L'Hôpital's rule.

$$
\lim _{x \rightarrow a} \frac{\ln \left(\frac{\sin x}{\sin a}\right)}{x-a}=\lim _{x \rightarrow a} \frac{\ln (\sin x)-\ln (\sin a)}{x-a}=\lim _{x \rightarrow a} \frac{\frac{\cos x}{\sin x}}{1}=\frac{\cos a}{\sin a}
$$

since $\sin a \neq 0$.
Hence,

$$
\lim _{x \rightarrow a}\left(\frac{\sin x}{\sin a}\right)^{1 /(x-a)}=e^{\frac{\cos a}{\sin a}}
$$

6. (a) Let $f(x)=x^{3}+3 x-2 k$. Then Newton's method tells us

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} .
$$

Since $f^{\prime}(x)=3 x^{2}+3$, substituting yields

$$
\begin{aligned}
x_{n+1} & =x_{n}-\frac{\left(x_{n}^{3}+3 x_{n}-2 k\right)}{\left(3 x_{n}^{2}+3\right)} \\
& =\frac{\left(3 x_{n}^{2}+3\right) x_{n}-\left(x_{n}^{3}+3 x_{n}-2 k\right)}{\left(3 x_{n}^{2}+3\right)} \\
& =\frac{2}{3} \cdot \frac{x_{n}^{3}+k}{x_{n}^{2}+1}
\end{aligned}
$$

(b) Use the above formula with $k=1, x_{0}=1$, to conclude

$$
\begin{aligned}
& x_{0}=1 \\
& x_{1}=\frac{2}{3} \cdot \frac{1^{3}+1}{1^{2}+1}=\frac{2}{3} \approx 0.66667 \\
& x_{2} \approx 0.59829 \\
& x_{3} \approx 0.59607 \\
& x_{4} \approx 0.59607
\end{aligned}
$$

\therefore Accurate to 5 decimal places, $x^{3}+3 x-2=0$ has a root at 0.59607 .
7. (a) Notice that $f(0)$ is not defined. However, $f(1)=-2<0, f(e)=e-2>0$, and f is continuous on $[1, e]$. Thus, by the Intermediate Value Theorem, f has a root in $(1, e)$ [and therefore has a root in $(0, e)]$.
(b) If $f(x)=x \ln x-2$, then $f^{\prime}(x)=\ln x+1$. Hence, Newton's method tells us that

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n} \ln x_{n}-2}{\ln x_{n}+1} .
$$

Thus, $x_{0}=2, x_{1} \approx 2.362464, x_{2} \approx 2.345783, x_{3} \approx 2.345751, x_{4} \approx 2.345751$.
Accurate to six decimal places f has a root of 2.345751 .
(c) Since $f^{\prime}(x)=\ln x+1$ and $f^{\prime \prime}(x)=1 / x$, if x is near 2 [in fact, if $x>0$], then both $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)>0$ so that f is concave up and increasing. Thus, all tangent lines lie under the graph of f, and intersect the x-axis at points larger than the root. This implies that in the Newton's method scheme, all approximations will be bigger than the actual solution. [This would not be true if f were concave up and decreasing, instead.]

