
Math 111.01 Summer 2003
Assignment #5 Solutions

1. I hope you did!

2. Practice problems.

Solutions may be found in the back of the text, or in the Student Solutions Manual.

3. Problems to hand in.

Section 4.5

#4. a. Type
[
00

]
indeterminate form.

b. limx→a[f(x)]p(x) = 0.

c. Type [1∞] indeterminate form.

d. Type
[
∞0

]
indeterminate form.

e. limx→a[p(x)]q(x) = ∞.

f. limx→a
q(x)

√
p(x) = limx→a[p(x)]1/q(x), so this is a type

[
∞0

]
indeterminate form.

#10. limx→π
tan x

x = 0
π = 0, by continuity. (L’Hôpital’s rule does NOT apply here!)

#14. limx→∞
ex

x3 is an indeterminate form of type
[

0
0

]
, so we may apply L’Hôpital’s rule. In fact,

we must apply it three times:

lim
x→∞

ex

x3
= lim

x→∞

ex

3x2
= lim

x→∞

ex

6x
= lim

x→∞

ex

6
= ∞.

#34. limx→∞
(
1 + a

x

)bx is a [1∞] type indeterminate form. We thus note that limx→∞
(
1 + a

x

)bx =
elimx→∞ bx ln(1+ a

x
). But limx→∞ bx ln(1+ a

x) is a [∞ · 0] type indeterminate form, so we com-
pute

lim
x→∞

bx ln(1 +
a

x
) = b lim

x→∞

ln(1 + a
x)

1/x
= b lim

x→∞

1
1+ a

x
· −a

x2

−1/x2
= b lim

x→∞

a

1 + a
x

= ab.

Thus,

lim
x→∞

(
1 +

a

x

)bx
= eab.

#44. Note first that xe−x2
has no vertical asymptotes because it is continuous for all x. To find

horizontal asymptotes, we must compute limx→∞ xe−x2
and limx→−∞ xe−x2

. These are
both [∞ · 0] forms. Using L’Hôpital’s rule, we find that

lim
x→±∞

xe−x2
= lim

x→±∞

x

ex2 = lim
x→±∞

1
2xe−x2 = 0.

Thus the line y = 0 is the horizontal asymptote.



#54. a. limt→∞ v = limt→∞
mg
c (1 − e−ct/m) = mg

c , since limt→∞−ct/m = −∞. This means
that the limiting velocity as time goes on is mg

c .

b. limm→∞ v = limm→∞
mg
c (1− e−ct/m) = mg

c is a [∞ · 0] type indeterminate form. We

use L’Hôpital’s rule to compute limm→∞
mg
c (1− e−ct/m) = g

c limm→∞
(1−e−ct/m)

1/m

= g
c limm→∞

−ct/m2e−ct/m

−1/m2 = gt limm→∞ e−ct/m = gt. Thus for very heavy objects, the
velocity increases approximately linearly with time and is not dependent on mass.

Section 4.6

#4. Let x be any number in (0,∞), i.e., x is any positive number. The sum of x and its
reciprocal is f(x) = x + 1

x , so we seek to minimize f . We will have to apply the first
derivative test for absolute minima. We first compute f ′(x) = 1 − 1

x2 . Setting f ′(x) = 0,
we find that 1 − 1

x2 = 0, or 1 = 1
x2 , or x = 1. (We can ignore the root x = −1 since we

only care about positive values of x.) We easily find that f ′(x) < 0 for all 0 < x < 1, so f
is decreasing for 0 < x < 1. Since f ′(x) > 0 for x > 1, f is increasing for x > 1. By the
first derivative test, f(1) is thus an absolute minimum of f on (0,∞), and 1 is thus our
desired positive number.

#8. a. Each of the boxes in Figure 1 can be constructed by cutting four z × z corners out
of a 3 × 3 piece of cardboard. Box 1 has volume 2 × 2 × .5 = 2, Box 2 has volume
1× 1× 1 = 1, and Box 3 has volume .5× .5× 2 = .5. It appears that the maximum
volume will be achieved by taking a short, flat box, so we try a few more possibilities:
1.5 × 1.5 × .75 = 1.68...; 2.5 × 2.5 × .25 = 1.56...; 2.25 × 2.25 × .375 = 1.89.... Thus
we guess that the maximum volume will be around 2.

Box 1 

x=2 

y=2 

z=.5 

Box 2 

x=y=1 

z=1

Box 3 

x=y=.5 

z=2 

Figure 1: figure for #8 a

b. See Figure 2 on the following page.

c. V (x, z) = x2z.

d. x + 2z = 3, so x = 3− 2z.

e. V (z) = (3− 2z)2z = (9− 12z + 4z2)z = 9z − 12z2 + 4z3.

f. We first note that 0 ≤ z ≤ 1.5, so we shall use the closed interval method to find
the minimum of V on this interval. V ′(z) = 9 − 24z + 12z2 = 3(4z2 − 8z + 3) =



z 

x 

Figure 2: figure for #8 b

3(2z − 3)(2z − 1), which has zeros at z = 1/2 and z = 3/2. We thus compute
V (0) = 0, V (1/2) = 22 · .5 = 2, and V (3/2) = 0. By the closed interval method, the
maximum volume is V (1/2) = 2 ft3.

#10. Let x represent the length and width of the square base of the box, and let z be its height
as in the previous problem. The volume is 32,000 cm3 = x2z, and the amount of material
used is the surface area, that is, S(x, z) = x2 + 4xz. Using the volume constraint, we find
that z = 32000

x2 , so we may eliminate z in S to find S(x) = x2 + 128,000
x . We also note

that x may be any positive number, so we will use the first derivative test for absolute
maxima and minima to minimize S. S′(x) = 2x− 128,000

x2 . Setting S(x) = 0, we find that
2x = 128,000

x2 , or x3 = 64, 000 or x = 40 cm. We see that S′(x) < 0 for x < 40 and S′(x) > 0
for x > 40, so that S(40) is an absolute minimum by the first derivative test for absolute
extrema. To complete the problem, we find z = 32000

402 = 20 cm, so the base should be 40
cm on each side and the height 20 cm.

#12. Let x be the length of the shorter side of the base, so the other side of the base has length
2x. Also, let z be the height of the box. The volume is given by 2x ·x ·z = 10 m3. Also, to
get the cost, we add 10 times the surface area of the bottom and 6 times the total surface
area of the sides. That is, C(x, z) = 10(2x · x) + 6(2 · 2xz + 2 · xz) = 20x2 + 36xz. We
then solve for z in our volume constraint to find that z = 5

x2 . Substituting into the cost
equation, we find that C(x) = 20x2 + 180

x . x may be any positive number here, so we will
use the first derivative test for absolute extrema. C ′(x) = 40x − 180

x2 . Setting C = 0, we

find that 40x = 180
x2 , or x3 = 180

40 = 9
2 . Thus x = 3

√
9
2 is a critical point of C. We see that

C ′(x) < 0 if x < 3

√
9
2 and C ′(x) > 0 if x > 3

√
9
2 , so the absolute minimum of C(x) is about

$ 3

√
9
2 =$163.54 by the first derivative test.

#16. See Figure 3 on the following page for a diagram. The rectangle displayed has an area of
A(x, y) = 2xy. Since y = 8 − x2, we substitute to find A(x) = 2x(8 − x2) = 16x − 2x3.
We also note that since we require the rectangle to be above the x-axis, we must have
0 ≤ x ≤

√
8. Thus we can use the closed interval method to find the absolute minimum

of A. A′(x) = 16 − 6x2, which is 0 when 16 = 6x2 or x =
√

8
3 . A(0) = A(

√
8) = 0, and

A(
√

8
3) ≈ 17.4, so the absolute maximum occurs at x =

√
8
3 . At this point, y = 8− 8/3 =

16/3, so the rectangle giving the largest area is 2
√

8
3 × 16/3.
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Figure 3: figure for #16

#32. We first note that we can find the fuel consumption per mile at a given speed by dividing
the fuel consumption per hour by the speed: G(v) = c

v . In order to optimize G, we should

take its first derivative and set it equal to 0, that is, G′(v) = v dc
dv
−c dv

dv
v2 = 0. Multiplying

through by v2 and noting that dv
dv = 1, we have v dc

dv − c = 0, or dc
dv = c

v . We next note that
the slope of a line passing through the origin and through any point (v, c) on the graph
given in the book is c

v . Since we are looking for a point where c
v = dc

dv , we may equivalently
look for a point where the line passing through (v, c) and the origin (which has slope c

v ,
recall) is one and the same as the tangent line to the curve c = c(v) at the point (v, c).
Doing this approximately and graphically gives us v ≈ 53 mph.

Section 4.8

#4. a. If x1 = 0, then x2 is negative, and x3 is even more negative. The sequence of
approximations does not converge, so Newton’s method fails.

b. If x1 = 1, then the tangent line is horizontal and Newton’s method fails.

c. If x1 = 3, then x2 = 1, and we have the same situation as in (b). Newton’s method
fails again.

d. If x1 = 4, then the tangent line is horizontal and Newton’s method fails.

e. If x1 = 5, then x2 is greater than 6, x3 gets closer to 6, and the sequence of approxi-
mations converges to 6. Newton’s method succeeds!

#6. If f(x) = x3 − x2 − 1, then f ′(x) = 3x2 − 2x, so that

xn+1 = xn −
f(xn)
f ′(xn)

= xn −
x3

n − x2
n − 1

3x2
n − 2xn

.

Now, if x1 = 1, then

x2 = 1− 1− 1− 1
3− 2

= 2,

and

x3 = 2− 23 − 22 − 1
3 · 22 − 2 · 2

= 1.625.



#16. From the graph below, we see that the only root of this equation is near 0.6. Since
f(x) = cos3(x2 + 1)− x3, we have f ′(x) = −2x sin(x2 + 1)− 3x2, so that

xn+1 = xn −
cos3(x2

n + 1)− x3
n

−2xn sin(x2
n + 1)− 3x2

n

.

Taking x1 = 0.6, we get x2 ≈ 0.58688855, x3 ≈ 0.59698777 ≈ x4. To eight decimal places,
the root of the equation is 0.59698777.
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#20. (a) If f(x) = 1
x − a, then f ′(x) = − 1

x2 so that

xn+1 = xn −
x−1

n − a

−x−2
n

= x− n + xn − xx2
n = 2x− n− ax2

n.

(b) Using (a) with a = 1000 and x1 = 1/2 = 0.5, we get x2 = 0.5754, x3 ≈ 0.588485, and
x4 ≈ 0.588789 ≈ x5. Thus,

1
1.6984

≈ 0.588789.

#24. If f(x) = x2 +sinx, then f ′(x) = 2x+cos x. f ′(x) exists for all x, so to find the minimum
of f we can examine the zeroes of f ′. From the graph of f ′, we see that a good choice for
x1 is x− 1 = −0.5. Use g(x) = 2x + cos x and g′(x) = 2− sinx to obtain x2 ≈ −0.450627,
x3 ≈ −0.450184 ≈ x4. Since f ′′(x) = 2− sinx > 0 for all x, f(−0.450184) ≈ −0.232466 is
the absolute minimum.

4. To show lim
x→0

(sec x)1/x2
=
√

e we proceed as follows:

lim
x→0

(sec x)1/x2
= lim

x→0
eln(sec x)1/x2

= elimx→0 ln(sec x)1/x2

= elimx→0
1

x2 ln(sec x)

= elimx→0
ln(sec x)

x2 .



Now, we must compute lim
x→0

ln(sec x)
x2

which is indeterminant
[

0
0

]
, so that we can use L’Hôpital’s

rule.

lim
x→0

ln(sec x)
x2

= lim
x→0

sec x tan x
sec x

2x
= lim

x→0

tanx

2x
= lim

x→0

sec2 x

2
=

1
2
.

Hence,
lim
x→0

(sec x)1/x2
= e1/2 =

√
e.

5. To compute lim
x→a

(
sinx

sin a

)1/(x−a)

which is indeterminant [1∞], we proceed as above.

lim
x→a

(
sinx

sin a

)1/(x−a)

= lim
x→a

eln( sin x
sin a)1/(x−a)

= elimx→a ln( sin x
sin a)1/(x−a)

= e
limx→a

1
(x−a)

ln( sin x
sin a)

= elimx→a

ln( sin x
sin a)

x−a

Now, we must compute lim
x→a

ln
(

sin x
sin a

)
x− a

which is indeterminant
[

0
0

]
, so that we can use L’Hôpital’s

rule.

lim
x→a

ln
(

sin x
sin a

)
x− a

= lim
x→a

ln(sin x)− ln(sin a)
x− a

= lim
x→a

cos x
sin x

1
=

cos a

sin a

since sin a 6= 0.

Hence,

lim
x→a

(
sinx

sin a

)1/(x−a)

= e
cos a
sin a .

6. (a) Let f(x) = x3 + 3x− 2k. Then Newton’s method tells us

xn+1 = xn −
f(xn)
f ′(xn)

.

Since f ′(x) = 3x2 + 3, substituting yields

xn+1 = xn −
(x3

n + 3xn − 2k)
(3x2

n + 3)

=
(3x2

n + 3)xn − (x3
n + 3xn − 2k)

(3x2
n + 3)

=
2
3
· x3

n + k

x2
n + 1



(b) Use the above formula with k = 1, x0 = 1, to conclude

x0 = 1

x1 =
2
3
· 13 + 1
12 + 1

=
2
3
≈ 0.66667

x2 ≈ 0.59829
x3 ≈ 0.59607
x4 ≈ 0.59607

∴ Accurate to 5 decimal places, x3 + 3x− 2 = 0 has a root at 0.59607.

7. (a) Notice that f(0) is not defined. However, f(1) = −2 < 0, f(e) = e − 2 > 0, and
f is continuous on [1, e]. Thus, by the Intermediate Value Theorem, f has a root in (1, e) [and
therefore has a root in (0, e)].

(b) If f(x) = x lnx− 2, then f ′(x) = lnx + 1. Hence, Newton’s method tells us that

xn+1 = xn −
f(xn)
f ′(xn)

= xn −
xn lnxn − 2
lnxn + 1

.

Thus, x0 = 2, x1 ≈ 2.362464, x2 ≈ 2.345783, x3 ≈ 2.345751, x4 ≈ 2.345751.

Accurate to six decimal places f has a root of 2.345751.

(c) Since f ′(x) = lnx + 1 and f ′′(x) = 1/x, if x is near 2 [in fact, if x > 0], then both f ′(x) > 0
and f ′′(x) > 0 so that f is concave up and increasing. Thus, all tangent lines lie under the graph
of f , and intersect the x-axis at points larger than the root. This implies that in the Newton’s
method scheme, all approximations will be bigger than the actual solution. [This would not be
true if f were concave up and decreasing, instead.]


