Math 111.01 Summer 2003 Assignment #3 Solutions

1. Seriously, you should rework all of the problems on Prelim #1, paying special attention to those that you got incorrect.

2. Practice problems.

Solutions may be found in the back of the text, or in the Student Solutions Manual.

3. Practice computing derivatives.

Solutions may be found in the back of the text, or in the Student Solutions Manual.

4. Problems to hand in.

Section 2.8

- #12. $-P'(0) \approx 0$ since P(t) appears to have a horizontal tangent line at 0.
 - -P'(t) seems to increase to 1 (approximately) at t = 5.
 - -P'(t) decrease slowly from t = 5 to 4t = 10 and continues to decrease for $t \ge 10$.
 - P'(t) is always positive. Since P(t) "flattens" near t = 15, we have P'(t) approaches 0 as t increases.

As t increases, we see that the rate of change of the yeast population approaches 0. That is, the yeast population stabilizes, and remains constant. (Just because P' approaches 0, does NOT mean that P approaches 0.)

- **#32.** a. Recall that a function f(x) is continuous at x = a if $\lim_{x\to a} f(x) = f(a)$. So f(x) is discontinuous at x = -2: we have $\lim_{x\to -2} f(x)$ exists; however, $\lim_{x\to -2} f(x) \neq f(-2)$. x = 0 (the limit doesn't even exist) and x = 5 for the same reason. It's continuous at all other points in its domain.
 - **b.** By Theorem 4, pg. 163, we know that if f(x) is not continuous at x = a, then it is not differentiable there either. Immediately, we know f is **not** differentiable at x = -2, 1, 5. Moreover, at x = 2, we can see there is no well-defined best line approximation (tangent line) to the graph: the graph is "pointy" (or "has a cusp") at (2, g(2)). So g is not differentiable at x = -2, 0, 2, 5 and it is differentiable at all other points in its domain.
- #46. Where is $f(x) = \llbracket x \rrbracket$ (the greatest integer function) not differentiable? A glance at the graph of f(x) (see pg. 116) reveals that f(x) is not even continuous at **any integer value** a. Recall that if a function is differentiable at a point d, then it must be continuous at d (see Theorem 4, pg. 163).

But for all non-integer values of x, it's clear that a best line approximation (a tangent line) exists at (x, f(x)) and that this tangent line is a horizontal line. Thus, f'(x) = 0, for all x not an integer, while f'(x) doesn't exist if x is an integer.

Section 2.10

#4. a. Here is one example of a curve whose slope is always positive and increasing.

b. Here is one example of a curve whose slope is always positive and decreasing.

c. Here is one possibility for such a pair: $y = e^x$ has positive and increasing slope; $y = \ln(x)$ has positive and decreasing slope.

#18. Notice that f is always concave down for $x \neq 1$ since f'' < 0. Also, in the interval $(-\infty, -1)$ the slope is positive, in (-1, 1) the slope is negative, and in $(1, \infty)$ the slope is positive again. Since f'(-1) = 0, f has a horizontal tangent at -1. We have a cusp at x = 1 since f'(1) does not exist.

#22. $f'(x) = e^{-x^2}$ is always positive since $e^{-x^2} = \frac{1}{e^{x^2}} > 0$. Therefore, f is always increasing.

Section 3.1

#8. $y = 5e^x + 3 \Rightarrow y' = 5e^x$

- #20. $y = ae^{v} + bv^{-1} + cv^{-2} \Rightarrow y' = ae^{v} bv^{-2} 2cv^{-3} = ae^{v} \frac{b}{v^{2}} \frac{2c}{v^{3}}$
- #34. $y' = 2x + 2e^x$. Therefore y'(0) = 2 and so the equation of the tangent line at (0, 2) is y = 2x + 2.

#42. $s = 2t^3 - 7t^2 + 4t + 1$

a. $v(t) = s'(t) = 6t^2 - 14t + 4$ a(t) = v'(t) = s''(t) = 12t - 14

- **b.** $a(1) = 12 14 = -2 \text{ m/s}^2$
- **c**. Below is a plot of s(t), v(t), and a(t).

#46. f has a horizontal tangent when f'(x) = 0. Since $f'(x) = 6x^2 - 6x - 6$, setting it equal to zero gives $6(x^2 - x - 1) = 0 \Rightarrow x = \frac{1 \pm \sqrt{5}}{2}$ by the quadratic formula.

Section 3.2
#4.
$$g'(x) = \sqrt{x}e^x + e^x(\frac{1}{2}x^{-\frac{1}{2}}) = \sqrt{x}e^x + \frac{e^x}{2\sqrt{x}}$$

#10. $H'(t) = e^t(6t + 20t^3) + e^t(1 + 3t^2 + 5t^4)$
#28. a. $(f+g)'(3) = f'(3) + g'(3) = -6 + 5 = -1$
b. $(fg)'(3) = f(3)g'(3) + g(3)f'(3) = (4)(5) + (2)(-6) = 8$
c. $\left(\frac{f}{g}\right)'(3) = \frac{g(3)f'(3) - f(3)g'(3)}{[g(3)]^2} = \frac{(2)(-6) - (4)(5)}{4} = -8$
d. $\left(\frac{f}{f-g}\right)'(3) = \frac{[f(3) - g(3)]f'(3) - f(3)[f'(3) - g'(3)]}{[f(3) - g(3)]^2} = \frac{(4-2)(-6) - 4(-6-5)}{(4-2)^2} = 8$

#36. $f(x) = x^2 e^x$ is concave down when f'' < 0.

$$f'(x) = x^2 e^x + 2x e^x$$

$$f''(x) = (x^2 e^x + 2x e^x) + (2x e^x + 2e^x) \quad \text{(product rule again)}$$

$$\Rightarrow x^2 e^x + 4x e^x + 2e^x = 0$$

$$\Rightarrow e^x (x^2 + 4x + 2) = 0$$

$$\Rightarrow x^2 + 4x + 2 = 0 \quad \text{since } e^x > 0 \text{ for all } x$$

$$\Rightarrow x = \frac{-4 \pm \sqrt{8}}{2} = -2 \pm \sqrt{2}$$

Therefore f'' < 0 when x is in the interval $(-2 - \sqrt{2}, -2 + \sqrt{2})$.

Section 1.7

#4. $x = e^{-t} + t$ and $y = e^t - t$ for $-2 \le t \le 2$. We cannot eliminate the parameter easily to solve for y in terms of x. However, if we plot points we can get an idea of what this curve looks like.

t =	-2	-1	0	1	2
$x \approx$	5.4	1.7	1	1.4	2.1
$y \approx$	2.1	1.4	1	1.7	5.4

#10. a. If $x = 4\cos\theta$ and $y = 5\sin\theta$ for $-\pi/2 \le \theta \le \pi/2$, then $\cos\theta = x/4$ and $\sin\theta = y/5$. Squaring both $\sin\theta$ and $\cos\theta$, and adding them, gives

$$1 = (\cos \theta)^{2} + (\sin \theta)^{2} = \left(\frac{x}{4}\right)^{2} + \left(\frac{y}{5}\right)^{2}.$$

b. This is the equation of a (half)-ellipse. The parametric curve starts at (0, -5) and traverses the ellipse through (4, 0) to (0, 5).

#18. If $x = \cos^2 t$ and $y = \cos t$ for $0 \le t \le 4\pi$, then $x = y^2$ for $0 \le x \le 1$ and $-1 \le y \le 1$. Thus, this describes a parabola starting at (1, 1), going through the origin to (1, -1), going back through the origin to (1, 1), going through the origin again to (1, -1), and finally going through the origin and ending at (1, 1).

Section 3.4

#8. If
$$y = \frac{\sin x}{1 + \cos x}$$
, then

$$y' = \frac{(1 + \cos x)\cos x - \sin x(-\sin x)}{(1 + \cos x)^2} = \frac{\cos x + \cos^2 x + \sin^2 x}{(1 + \cos x)^2} = \frac{\cos x + 1}{(1 + \cos x)^2}$$

$$= \frac{1}{1 + \cos x}$$

#14.

$$\frac{d}{dx}\sec x = \frac{d}{dx}\frac{1}{\cos x} = \frac{0\cdot\cos x - 1\cdot(-\sin x)}{\cos^2 x} = \frac{\sin x}{\cos^2 x} = \sec x \tan x$$

#18. If $f(x) = e^x \cos x$, then $f'(x) = e^x \cos x - e^x \sin x$. Hence, f'(0) = 1. Thus, the equation of the tangent line is

$$y - 1 = 1(x - 0)$$
 or $y = x + 1$.

#26. In order to find the points on the curve $y = \frac{\cos x}{2+\sin x}$ at which the tangent is horizontal, we need to find the points x at which y' = 0. Hence,

$$y' = \frac{(2+\sin x)(-\sin x) - \cos x \cos x}{(2+\sin x)^2} = \frac{-2\sin x - \sin^2 x - \cos^2 x}{(2+\sin x)^2} = \frac{-2\sin x - 1}{(2+\sin x)^2}$$

Notice that $(2+\sin x)^2 \neq 0$ so that y' is defined for all x. Thus, y' = 0 when $-2\sin x - 1 = 0$ or $\sin x = -1/2$. However, there are two "reference values" of $x \in [0, 2\pi)$ with $\sin x = -1/2$.

-1/2; namely $x = 7\pi/6$ and $x = 11\pi/6$. Of course, sin is 2π -periodic, so there are infinitely many values of x at which sin x = -1/2. Thus, y has a horizontal tangent when

$$x = \frac{7\pi}{6} + 2\pi n$$
, and $x = \frac{11\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$.

If $x = \frac{7\pi}{6} + 2\pi n$, then $y = -1/\sqrt{3}$, and if $x = \frac{11\pi}{6} + 2\pi n$, then $y = 1/\sqrt{3}$. Thus, y has a horizontal tangent at the points

$$(\frac{7\pi}{6} + 2\pi n, -\frac{1}{\sqrt{3}}), \text{ and } (\frac{11\pi}{6} + 2\pi n, \frac{1}{\sqrt{3}}), n \in \mathbb{Z}.$$

5. More practice computing derivatives.

Section 2.8

#20.

$$f'(x) = \lim_{h \to 0} \frac{5 - 4(x+h) + 3(x+h)^2 - (5 - 4x + 3x^2)}{h}$$
$$= \lim_{h \to 0} \frac{5 - 4x - 4h + 3x^2 + 6xh + 3h^2 - 5 + 4x - 3x^2}{h}$$
$$= \lim_{h \to 0} \frac{-4h + 6xh + 3h^2}{h}$$
$$= \lim_{h \to 0} (-4 + 6x + 3h)$$
$$= -4 + 6x$$

Thus, $\mathscr{D}(f) = \mathbb{R}$ and $\mathscr{D}(f') = \mathbb{R}$.

#22.

$$f'(x) = \lim_{h \to 0} \frac{(x+h) + \sqrt{x+h} - (x+\sqrt{x})}{h} = \lim_{h \to 0} \frac{h}{h} + \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$$
$$= 1 + \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}} = 1 + \lim_{h \to 0} \frac{x+h-x}{h(\sqrt{x+h} + \sqrt{x})}$$
$$= 1 + \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = 1 + \frac{1}{2\sqrt{x}} = 1 + \frac{1}{2}x^{-1/2}$$

Thus, $\mathscr{D}(f) = \{x \ge 0\}$ and $\mathscr{D}(f') = \{x > 0\}.$

#23.

$$f'(x) = \lim_{h \to 0} \frac{\sqrt{1 + 2(x+h)} - \sqrt{1 + 2x}}{h} = \lim_{h \to 0} \frac{\sqrt{1 + 2(x+h)} - \sqrt{1 + 2x}}{h} \cdot \frac{\sqrt{1 + 2(x+h)} + \sqrt{1 + 2x}}{\sqrt{1 + 2(x+h)} + \sqrt{1 + 2x}}$$
$$= \lim_{h \to 0} \frac{1 + 2x + 2h - 1 - 2x}{h(\sqrt{1 + 2(x+h)} + \sqrt{1 + 2x})} = \lim_{h \to 0} \frac{2h}{h(\sqrt{1 + 2(x+h)} + \sqrt{1 + 2x})}$$
$$= \lim_{h \to 0} \frac{2}{\sqrt{1 + 2(x+h)} + \sqrt{1 + 2x}} = \frac{2}{\sqrt{1 + 2x} + \sqrt{1 + 2x}}$$
$$= \frac{1}{\sqrt{1 + 2x}}$$

Thus, $\mathscr{D}(f) = \{x \ge -1/2\}$ and $\mathscr{D}(f) = \{x > -1/2\}.$

#24.

$$f'(x) = \lim_{h \to 0} \frac{\frac{3+(x+h)}{1-3(x+h)} - \frac{3+x}{1-3x}}{h}$$

= $\lim_{h \to 0} \frac{(3+x+h)(1-3x) - (3+x)(1-3x-3h)}{h(1-3x-3h)(1-3x)}$
= $\lim_{h \to 0} \frac{3+x+h-9x-3x^2-3xh-3+9x+9h-x+3x^2+3xh}{h(1-3x-3h)(1-3x)}$
= $\lim_{h \to 0} \frac{h+9h}{h(1-3x-3h)(1-3x)}$
= $\lim_{h \to 0} \frac{10}{(1-3x-3h)(1-3x)}$
= $\frac{10}{(1-3x)^2}$

Thus, $\mathscr{D}(f) = \{x \neq 1/3\}$ and $\mathscr{D}(f') = \{x \neq 1/3\}.$

Page 259

#3.

$$y' = \frac{1}{2}x^{-1/2} - \frac{4}{3}x^{-7/3}$$

#6.

$$y' = \frac{e^x(1+x^2) - 2xe^x}{(1+x^2)^2} = \frac{e^x(x^2 - 2x + 1)}{(1+x^2)^2} = \frac{e^x(x-1)^2}{(1+x^2)^2}$$

#9.

$$y' = \frac{(1-t^2) - t(-2t)}{(1-t^2)^2} = \frac{t^2 + 1}{(1-t^2)^2}$$

Section 3.4

$$y' = \sec t \tan t + \sec^2 t$$

#9.

$$y' = \frac{(\sin x + \cos x) - x(\cos x - \sin x)}{(\sin x + \cos x)^2} = \frac{\sin x + \cos x - x\cos x + x\sin x}{(\sin x + \cos x)^2}$$

#11.

$$y' = \sec\theta \tan\theta \tan\theta + \sec\theta \sec^2\theta = \sec\theta(\tan^2\theta + \sec^2\theta)$$

6.

a. To compute f'(0), use the definition.

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 |\cos \frac{\pi}{2x}| - 0}{x - 0} = \lim_{x \to 0} x |\cos \frac{\pi}{2x}|$$

Now, in order to compute this limit, we need the Squeeze Theorem. Since $-1 \le \cos \theta \le 1$ for all θ , we have $0 \le |\cos \theta| \le 1$. Thus, if x > 0, then

$$|x \cdot 0 \le x| \cos \frac{\pi}{2x}| \le 1 \cdot x$$

However, if x < 0, then (because we have a negative number, the inequalities switch)

$$|x \cdot 0 \ge x| \cos \frac{\pi}{2x}| \ge 1 \cdot x$$

Since $\lim_{x\to 0} 0 = 0$, and $\lim_{x\to 0} x = 0$, the first inequalities give us $\lim_{x\to 0^+} x |\cos \frac{\pi}{2x}| = 0$, while the second inequalities give us $\lim_{x\to 0^-} x |\cos \frac{\pi}{2x}| = 0$. Together, they tell us

$$\lim_{x \to 0} x |\cos \frac{\pi}{2x}| = 0$$

so that f'(0) = 0.

b. To show f'(1/3) does not exist, we attempt to compute $\lim_{x\to 1/3} \frac{f(x)-f(1/3)}{x-1/3}$. Note that f(1/3) = 0. Thus,

$$\lim_{x \to 1/3} \frac{f(x) - f(1/3)}{x - 1/3} = \lim_{x \to 1/3} \frac{x^2 |\cos \frac{\pi}{2x}|}{x - 1/3}$$

Attempting to plug in 1/3 gives the indeterminant form $\begin{bmatrix} 0\\ 0 \end{bmatrix}$. Since we cannot factor, we are left to use a calculator.

(i) Plot a graph of $f(x) = x^2 |\cos \frac{\pi}{2x}|$ and zoom in on x = 1/3. The graph looks like a cusp. This leads us to suspect the derivative DNE.

(ii) Plot a graph of $\frac{x^2 |\cos \frac{\pi}{2x}|}{x-1/3}$ and zoom in on x = 1/3. The graph looks like a vertical line. This tells us the "tangent at 1/3 is vertical." That is, f'(1/3) DNE.

(iii) Confirm this with a table of values for the above.

7. Currently, we do not have techniques that allow us to determine $\lim_{x\to 0} (\sec x)^{1/x^2}$. However, we can approximate it with a calculator.

x	$(\sec x)^{1/x^2}$
0.0001	1.6487
-0.0001	1.6487
0.00001	1.6487
-0.00001	1.6487
0.000001	1.6482
-0.000001	1.6482
0.0000000001	1.0000
-0.0000000001	1.0000
0.00000000000001	1.0000
-0.00000000000001	1.0000

If we use a table of values on the TI-83, then we get the following

This leads us to suspect that

$$\lim_{x \to 0} (\sec x)^{1/x^2} = 1$$

If we graph $(\sec x)^{1/x^2}$ then the graph appears to be parabolic, and going through 1.65.

However, if we zoom in near x = 0, it appears to be nearly linearly, and going through 1.64872.

Thus, graphing leads us to guess that

$$\lim_{x \to 0} (\sec x)^{1/x^2} \approx 1.64872.$$

But, if we zoom in even more (using the computer software Maple), we see crazy behaviour!

This graph leads us to guess that

$$\lim_{x \to 0} (\sec x)^{1/x^2} \quad \text{DNE}$$

These results are in conflict! Later, we will see how to do this algebraically.