Math 111 Fall 2002

Linear Approximation Practice Problems

Since there were no problems on linear approximation on the second practice prelim, we are including some separately.

1. Consider the function $f(x)=e^{2 x}$.
(a) Determine the linearization $L(x)$ of $f(x)$ at the point $(0,1)$.
(b) Use your result in (a) to approximate $e^{0.2}$.
(c) For which values of x is $L(x)$ accurate to within 0.1 of $f(x)$?
2. The equation $y^{5}+x y^{2}+x^{3}=4 x+3$ defines y implicitly as a function of x near the point $(2,1)$.
(a) Determine the values of y^{\prime} and $y^{\prime \prime}$ at this point.
(b) Use the linear (tangent line) approximation to estimate y when $x=1.97$.
(c) Make a sketch showing how the curve relates to the tangent line near the point $(2,1)$.
3. One use of a linear approximation is to prove the chain rule. Recall that the definition of the derivative of the function f is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

Use a linear approximation to prove the chain rule. That is, prove that

$$
[f(g(x))]^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Hint: Differentiate $f(g(x))$ using $g(x+h) \approx g(x)+h g^{\prime}(x)$ and $f(z+k) \approx f(z)+k f^{\prime}(z)$.

