Math 105 Prelim \#3 - Solutions

1.

(a) The mode is the most frequently occuring data point, which is 38 . (It occurs 18 times.)
(b) The median is the middle number when the data are ordered in increasing rank. In this case, that is the 34th ranked number; thus the median is 37 .
(c) The mean is given by

$$
\bar{x}=\frac{2 \times 33+2 \times 34+9 \times 35+11 \times 36+12 \times 37+18 \times 38+13 \times 39}{67} \approx 37.015
$$

(d) The variance is given by $s^{2} \approx \frac{\left(2 \times 33^{2}+2 \times 34^{2}+9 \times 35^{2}+11 \times 36^{2}+12 \times 37^{2}+18 \times 38^{2}+13 \times 39^{2}\right)-67(37.015)^{2}}{67-1}$ so that the standard deviation is

$$
s=+\sqrt{s^{2}} \approx 1.59
$$

2.

(a) Let X be a normally distributed random variable with mean $\mu=16$ and standard deviation $\sigma=0.5$ which represents a randomly chosen bag of grapes. Thus,

$$
P(X>17)=P\left(\frac{X-16}{0.5}>\frac{17-16}{0.5}\right)=P(Z>2)
$$

where $Z=(X-16) / 0.5$ is a normal random variable with mean 0 and standard deviation 1. From Table 1, $P(Z>2)=1-P(Z \leq 2)=1-0.9772=0.0228$.
(b) The event that at least one will weigh more than 17 ounces is the complement of the event that none will weigh more than 17 ounces. Therefore,
$P($ at least one of these 3 weighs more than 17$)=1-P($ none of these 3 weigh more than 17$)$

$$
\begin{aligned}
& =1-\binom{3}{0}(0.0228)^{0}(0.9772)^{3} \\
& \approx 0.06685
\end{aligned}
$$

(c) If we look in Table 1, we can easily see that if Z is a normal random variable with mean 0 and standard deviation 1 , then $P(Z \leq-1.28) \approx 0.1$ or $P(Z>-1.28) \approx 0.9$. Since $Z=(X-16) / 0.5$ we find that

$$
P(Z>-1.28)=P(X>0.5(-1.28)+16)=P(X>15.36) \approx 0.9
$$

Thus roughly 90% of the grapes are heavier than 15.36 ounces.

3.

(a) This is binomial with probability of success $p=0.9$ and number of trials $n=10$.

$$
P(\text { exactly } 9 \text { receive letter on Tuesday })=\binom{10}{9}(0.9)^{9}(0.1)^{1} \approx 0.3874
$$

(b) For any binomial random variable X, we have $E(X)=n p$. Thus we expect $n p=$ $10 \times 0.9=9$ of our friends to receive the letter on Tuesday.
(c)
$P($ less than 8 receive letter on Tuesday $)=1-P($ at least 8 receive letter on Tuesday $)$

$$
\begin{aligned}
& =1-\left[\binom{10}{8}(0.9)^{8}(0.1)^{2}+\binom{10}{9}(0.9)^{9}(0.1)^{1}+\binom{10}{10}(0.9)^{10}(0.1)^{0}\right] \\
& \approx 0.0702
\end{aligned}
$$

4.

(i) Since

$$
p=P(3 \text { ones })=\binom{6}{3}(1 / 6)^{3}(5 / 6)^{3}
$$

and

$$
q=P(4 \text { twos })=\binom{6}{4}(1 / 6)^{4}(5 / 6)^{2}
$$

we can check that $p>q$.
(ii) Five cards are drawn from a standard deck of cards (with replacement): Since

$$
p=P(>3 \text { face cards })=\binom{5}{4}(12 / 52)^{4}(40 / 52)^{1}+\binom{5}{5}(12 / 52)^{5}(40 / 52)^{0}
$$

and

$$
q=P(<2 \text { red cards })=\binom{5}{0}(26 / 52)^{0}(26 / 52)^{5}+\binom{5}{1}(26 / 52)^{1}(26 / 52)^{4}
$$

we can check that $q>p$.
(iii) Note that $q=P(10-n$ heads $)=P(n$ tails $)$, and that by symmetry $P(n$ heads $)=$ $P(n$ tails $)$ so that $p=q$.

5.

(a) There are $10 \times 9 \times 8 \times 7=5040$ possible four digit numbers that you are allowed to pick. Thus, the probability of winning a prize of $\$ 500$ is

$$
\frac{1}{5040}
$$

(b) Your expected profit is your expected winnings less your expected cost. Thus, your expected profit is

$$
\left(500 \times \frac{1}{5040}+0 \times \frac{5039}{5040}\right)-2 \approx-1.90 .
$$

In other words, an expected profit of $-\$ 1.90$ means you expect a net loss of $\$ 1.90$ when playing this lottery.
(c) This game is clearly unfair since you do not expect to break even when playing it.
(d) Let X be the unknown prize amount. If the game were fair, then X would satisfy

$$
\left(X \times \frac{1}{5040}+0 \times \frac{5039}{5040}\right)-2=0
$$

Thus, $X=10080$, or the prize amount should be $\$ 10,080$ in order for the lottery to be fair.
6. Let E be the event $\{$ mutated DNA $\}$ and let F be the event $\{4$ of 7 septuplets gain superpowers $\}$. Then the problem asks us to determine $P(E \mid F)$, which can be computed via Bayes' formula:

$$
P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F \mid E) P(E)+P\left(F \mid E^{\prime}\right) P\left(E^{\prime}\right)}
$$

We are told that $P(E)=0.01$ so that $P\left(E^{\prime}\right)=0.99$.

Given E, there is a 10% chance that someone gains superpowers so that the probability that 4 of 7 gain superpowers is

$$
P(F \mid E)=\binom{7}{4}(0.10)^{4}(0.90)^{3}=0.0025515 .
$$

However, given E^{\prime}, there is only a 4% chance that someone gains superpowers so that the probability that 4 of 7 gain superpowers is

$$
P\left(F \mid E^{\prime}\right)=\binom{7}{4}(0.04)^{4}(0.96)^{3} \approx 0.00007927 .
$$

Combining all of this gives
$P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F \mid E) P(E)+P\left(F \mid E^{\prime}\right) P\left(E^{\prime}\right)} \approx \frac{0.0025515 \times 0.01}{0.0025515 \times 0.01+0.00007927 \times 0.99} \approx 0.245$.

7.

(a) Since Y is binomial with probability of success $p=2 / 6$ and number of trials $n=98$, we have

$$
E(Y)=n p=\frac{98}{3}
$$

(b) Since Y has standard deviation $\sqrt{n p(1-p)}=\sqrt{98 \times 1 / 3 \times 2 / 3}=14 / 3$, let X be a normal random variable with mean $\mu=98 / 3$ and standard deviation $\sigma=14 / 3$. Then, by the normal approximation to the binomial, we have

$$
\begin{aligned}
P(30 \leq Y \leq 40) & \approx P(29.5 \leq X \leq 40.5) \\
& =P\left(\frac{29.5-98 / 3}{14 / 3} \leq \frac{X-98 / 3}{14 / 3} \leq \frac{40.5-98 / 3}{14 / 3}\right) \\
& \approx P(-0.68 \leq Z \leq 1.68) \\
& \approx 0.9535-0.2483=0.7052
\end{aligned}
$$

where Z is a normal random variable with mean 0 and standard deviation 1 , and the corresponding probabilities are found from Table 1.

