Math 105.04 Fall 2003
Planes, Lines, and Systems of Equations
The set of all points (x, y, z) where x, y, and z are all real numbers is called three dimensional Euclidean space. Sometimes this is denoted \mathbb{R}^{3}, or called 3-space.

We can describe points in 3-space using a Cartesian coordinate system, just as in the plane (two dimensional Euclidean space).

In the plane, the equation $y=m x+b$ describes a line of slope m, and y-intercept b. A line can be written more generally as

$$
a x+b y=c .
$$

Solving for y, we find this line has slope $-a / b$, and y-intercept c / b.
Thus, a line is a one dimensional subset of two dimensional space.
In a similar manner, the equation

$$
a x+b y+c z=d
$$

describes the most general two dimensional subset of three dimensional space, namely a plane.
The plane passes through the points $(d / a, 0,0),(0, d / b, 0)$, and $(0,0, d / c)$ as can be easily checked.
Consider three planes in 3 -space. They could intersect

- at no points. The planes could be mutually parallel, one plane may not intersect the other two.
- at a unique point. The planes describing the coordinate x-plane, y-plane, and z-plane intersect at a single point, the origin $(0,0,0)$.
- at infinitely many points. In this case, the three planes intersect in a line.

Example: The system

$$
\left\{\begin{array}{l}
2 x+y-z=2 \\
x+3 y+2 z=1 \\
x+y+z=2
\end{array}\right.
$$

intersects at the point $(2,-1,1)$.

Example: The system

$$
\left\{\begin{array}{l}
x+2 y-z=0 \\
3 x-y+z=6 \\
-2 x-4 y+2 z=0
\end{array}\right.
$$

intersects along the line given parametrically by $\left(\frac{15}{7} z+\frac{12}{7}, \frac{4}{7} z-\frac{6}{7}, z\right)$.

Example: The system

$$
\left\{\begin{array}{l}
2 x-2 y=-2 \\
y+z=4 \\
x+z=1
\end{array}\right.
$$

is inconsistent and has no solutions.

