8.4 \#50 [10 pts] There are $\binom{6}{3}$ ways to select the three mice that will recover. Each way occurs with probability $(0.70)^{3}(0.30)^{3}$. Thus,

$$
P(\text { exactly } 3 \text { of } 6 \text { mice recover })=\binom{6}{3}(0.70)^{3}(0.30)^{3} \approx .185
$$

8.4 \#56 [5 pts each] (a) There are $\binom{83}{10}$ ways to select the ten inoculated people that will get the flu. Each way occurs with probability $(0.20)^{10}(0.80)^{73}$. Thus,
$P($ exactly 10 people inoculated get the flu $)=\binom{83}{10}(0.20)^{10}(0.80)^{73} \approx .0210$.
(b) Note that P no more than 4$\}=P\{$ exactly 0$\}+P\{$ exactly 1$\}+P\{$ exactly 2$\}+P\{$ exactly $3\}+P\{$ exactly 4$\}$. Therefore,

$$
\begin{aligned}
& P(\text { no more than } 4 \text { people inoculated get the flu) }= \\
& \begin{array}{l}
\binom{83}{0}(0.20)^{0}(0.80)^{83}+\binom{83}{1}(0.20)^{1}(0.80)^{82}+\binom{83}{2}(0.20)^{2}(0.80)^{81} \\
\quad+\binom{83}{3}(0.20)^{3}(0.80)^{80}+\binom{83}{4}(0.20)^{4}(0.80)^{79} \\
\quad \approx 8.004 \times 10^{-5} .
\end{array} .
\end{aligned}
$$

(c) There is only one way (i.e., $\binom{83}{0}$ ways) in which no one gets the flu. Thus,

$$
P(\text { no people inoculated get the flu })=\binom{83}{0}(0.20)^{83}(0.80)^{0}=(0.20)^{83} \approx 9.046 \times 10^{-9} .
$$

8.4 \#64 [10 pts] Note that $\{$ fewer than 8$\}=\{\text { at least } 8\}^{\prime}$. Thus, $P($ fewer than 8$)=1-P($ at least 8$)=1-P($ exactly 8$)-P($ exactly 9$)-P($ exactly 10$)$. Therefore,

$$
P(\text { fewer than } 8)=1-\binom{10}{8}(0.2)^{8}(0.8)^{2}-\binom{10}{9}(0.2)^{9}(0.8)^{1}-\binom{10}{10}(0.2)^{10}(0.8)^{0} \approx .999922
$$

8.5 \#4 [10 pts] Let X be the number of black balls drawn. Then the possible values of X are 0,1 , or 2 . Thus,

$$
P(X=0)=\frac{4}{6} \cdot \frac{3}{5}=\frac{6}{15}, \quad P(X=1)=\frac{4}{6} \cdot \frac{2}{5}+\frac{2}{6} \cdot \frac{4}{5}=\frac{8}{15}, \quad P(X=2)=\frac{2}{6} \cdot \frac{1}{5}=\frac{1}{15} .
$$

8.5 \#10 [10 pts] By definition we have,

$$
E(y)=y_{1} P\left(y_{1}\right)+y_{2} P\left(y_{2}\right)+y_{3} P\left(y_{3}\right)+y_{4} P\left(y_{4}\right)=4 \times .4+6 \times .4+8 \times .05+10 \times .15=5.9 .
$$

$8.5 \# 14$ [10 pts] By definition, $E(x)=x_{1} P\left(x_{1}\right)+x_{2} P\left(x_{2}\right)+x_{3} P\left(x_{3}\right)+x_{4} P\left(x_{4}\right)+x_{5} P\left(x_{5}\right)$. We can read the appropriate probabilities from the histogram to find that

$$
E(x)=2 \times .2+4 \times .3+6 \times .2+8 \times .1+10 \times .2=5.6
$$

$8.5 \# 22[15 \mathrm{pts}]$ Let W be the number of women selected. The possible values for W are 0,1 , or 2 . We can compute the probability distribution of W as

$$
P(W=0)=\frac{5}{7} \cdot \frac{4}{6}=\frac{10}{21}, \quad P(W=1)=\frac{5}{7} \cdot \frac{2}{6}+\frac{2}{7} \cdot \frac{5}{6}=\frac{10}{21}, \quad P(W=2)=\frac{2}{7} \cdot \frac{1}{6}=\frac{1}{21} .
$$

Thus,

$$
E(W)=0 \times P(W=0)+1 \times P(W=1)+2 \times P(W=2)=\frac{10}{21}+\frac{2}{21}=\frac{12}{21} \approx .5714 .
$$

8.5 \#34 [5 pts each] (a) Let X be the amount of damage (in millions of dollars) under seeding and let Y be the amount of damage (in millions of dollars) under not seeding. Then

$$
E(X)=.038 \times 335.8+.143 \times 191.1+.392 \times 100+.255 \times 46.7+.172 \times 16.3 \approx 94.0,
$$

and

$$
E(Y)=.054 \times 335.8+.206 \times 191.1+.480 \times 100+.206 \times 46.7+.054 \times 16.3 \approx 116.0
$$

(b) The option to seed should therefore be chosen (since $94<116$).
$\mathbf{8 . 5} \# 48$ [10 pts] Let X be the expected payout (in $\$$) from the lottery. We easily compute $E(X)$ to be
$E(X)=100000 \times \frac{1}{2000000}+40000 \times \frac{2}{2000000}+10000 \times \frac{2}{2000000}=\frac{200000}{2000000}=0.10$.
Thus, since it costs $50 \$$ in time, paper, and stamps to enter, and your expected winnings are only 10Φ, it is not worth entering the lottery. (On the average, you can expect to win $-40 ¢!$)

