Section 7.6

\#6 [10 pts]. We have $P\left(R_{1}^{\prime} \mid Q\right)=1-P\left(R_{1} \mid Q\right)$, and so by Bayes' Theorem,

$$
\begin{aligned}
P\left(R_{1}^{\prime} \mid Q\right) & =1-\frac{P\left(R_{1}\right) \cdot P\left(Q \mid R_{1}\right)}{P\left(R_{1}\right) \cdot P\left(Q \mid R_{1}\right)+P\left(R_{2}\right) \cdot P\left(Q \mid R_{2}\right)+P\left(R_{3}\right) \cdot P\left(Q \mid R_{3}\right)} \\
& =1-\frac{(.40)(.05)}{(.40)(.05)+(.30)(.60)+(.60)(.35)} \\
& =1-\frac{.02}{.02+.18+.21} \\
& =1-\frac{.02}{.41}=\frac{.39}{.41} \cong 0.95=95 \% .
\end{aligned}
$$

\#12 [10 pts]. Let A $=$ from Supplier A, B $=$ from Supplier B, and D $=$ damaged bags of cement. Then by Bayes' Theorem,

$$
\begin{aligned}
P(A \mid D) & =\frac{P(A) \cdot P(D \mid A)}{P(A) \cdot P(D \mid A)+P(B) \cdot P(D \mid B)} \\
& =\frac{(.70)(1-.90)}{(.70)(1-.90)+(.30)(1-.95)} \\
& =\frac{.07}{.07+.015}=\frac{.07}{.085} \cong 0.82=82 \% .
\end{aligned}
$$

\#16 [10 pts]. Let D = defective appliances. Then by Bayes' Theorem,

$$
\begin{aligned}
P(A \mid D) & =\frac{P(A) \cdot P(D \mid A)}{P(A) \cdot P(D \mid A)+P(B) \cdot P(D \mid B)+P(C) \cdot P(D \mid C)} \\
& =\frac{(.15)(.01)}{(.15)(.01)+(.40)(.015)+(.45)(.02)} \\
& =\frac{.0015}{.0015+.006+.009}=\frac{.0015}{.0165} \cong 0.09=9 \% .
\end{aligned}
$$

\#26 [10 pts]. Let $\mathrm{V}=$ has the HIV virus, and let $\mathrm{T}=$ tested positive. Note that the probability of a false positive is $P\left(T \mid V^{\prime}\right)=2 \%$ and the probability of a false negative is $P\left(T^{\prime} \mid V\right)=5 \%$. Also, note that $P(V)=\frac{780,000}{295 \text { million }} \cong 0.0026$. We want $P(V \mid T)$, and by Bayes' Theorem we have:

$$
\begin{aligned}
P(V \mid T) & =\frac{P(V) \cdot P(T \mid V)}{P(V) \cdot P(T \mid V)+P\left(V^{\prime}\right) \cdot P\left(T \mid V^{\prime}\right)} \\
& =\frac{(.0026)(1-.05)}{(.0026)(1-.05)+(1-.0026)(.02)} \\
& =\frac{.00247}{.00247+.019948}=\frac{.00247}{0.022418} \cong 0.11=11 \% .
\end{aligned}
$$

\#32 [10 pts]. Let $\mathrm{S}=$ was wearing a seat belt, and let $\mathrm{K}=$ were killed. Then by Bayes' Theorem,

$$
\begin{aligned}
P(S \mid K) & =\frac{P(S) \cdot P(K \mid S)}{P(S) \cdot P(K \mid S)+P\left(S^{\prime}\right) \cdot P\left(K \mid S^{\prime}\right)} \\
& =\frac{(.49)(.27)}{(.49)(.27)+(.51)(.50)} \\
& =\frac{.1323}{.1323+.255}=\frac{.1323}{0.3873} \cong 0.34=34 \% .
\end{aligned}
$$

Section 8.1

\#14 [10 pts]. Using the multiplication principle, the number of meals is $3 \cdot 8 \cdot 5=120$.
$\# 20$ (a) $[6 \mathrm{pts}] \cdot \frac{7!}{3!1!1!1!1!}=7 \cdot 6 \cdot 5 \cdot 4=840$.
(b) $[6 \mathrm{pts}] \cdot \frac{6!}{2!2!1!1!}=\frac{720}{4}=180$.
(c) $[6 \mathrm{pts}] \cdot \frac{7!}{3!2!1!1!}=\frac{7 \cdot 6 \cdot 5 \cdot 4}{2 \cdot 1}=420$.
$\# 36[10 \mathrm{pts}] . P(20,9)=\frac{20!}{(20-9)!}=\frac{20!}{11!}=20 \cdot 19 \cdot 18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12=$ 60949324800 .
\#52 (a) [6 pts]. We use the multiplication principle, noting that since we are looking at completed circuits, the starting location doesn't matter. We then have 9 other cities to choose from, then 8 , etc., down to 1 . So there are $9!=362880$ different circuits.
(b) [6 pts]. Since in our calculations in (a) we travelled every circuit forward and backward, we only need to check half of the number above. So we only need to check $\frac{9!}{2}=181440$ circuits.

