SECTION 10.3

8) [10 pts] First, we rearrange the transition matrix so that the absorbing states (states 1 and 3) come first:

$$
\begin{aligned}
& 1 \\
& 3 \\
& 2
\end{aligned}\left[\begin{array}{cc|c}
1 & 0 & 0 \\
0 & 1 & 0 \\
\hline .6 & .3 & .1
\end{array}\right]
$$

So now, we have that $R=\left[\begin{array}{ll}6 & .3\end{array}\right]$ and $Q=[.1]$. The fundamental matrix is then given by $F=\left(I_{1}-Q\right)^{-1}=([1]-[.1])^{-1}=\left[\frac{9}{10}\right]^{-1}=\left[\frac{10}{9}\right]$. So we have that $F R=\left[\begin{array}{ll}\frac{10}{9}\end{array}\right]\left[\begin{array}{ll}\frac{6}{10} & \frac{3}{10}\end{array}\right]=\left[\begin{array}{ll}\frac{2}{3} & \frac{1}{3}\end{array}\right]$.
16) Before anything else, we set up the transition matrix of the Markov Chain, and find its fundamental matrix. Keep in mind that state i is the state where person A has i dollars. Then the transition matrix is:
0
1
2
3
4
5 $\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ \frac{3}{5} & 0 & \frac{2}{5} & 0 & 0 & 0 \\ 0 & \frac{3}{5} & 0 & \frac{2}{5} & 0 & 0 \\ 0 & 0 & \frac{3}{5} & 0 & \frac{2}{5} & 0 \\ 0 & 0 & 0 & \frac{3}{5} & 0 & \frac{2}{5} \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

The absorbing states are 0 and 5 , so we rewrite the transition matrix accordingly:
0
5
1
2
3
4 $\left[\begin{array}{cc|cccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \hline \frac{3}{5} & 0 & 0 & \frac{2}{5} & 0 & 0 \\ 0 & 0 & \frac{3}{5} & 0 & \frac{2}{5} & 0 \\ 0 & 0 & 0 & \frac{3}{5} & 0 & \frac{2}{5} \\ 0 & \frac{2}{5} & 0 & 0 & \frac{3}{5} & 0\end{array}\right]$

As before, we have

Also, we have:

$$
F R=\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4
\end{aligned}\left[\begin{array}{ll}
.9242 & .0758 \\
.8104 & .1896 \\
.6398 & .3602 \\
.3839 & .6161
\end{array}\right]
$$

a) [10 pts] If B has 3 dollars then A has two dollars, and so the first entry in the second row of $F R$ gives us the probability that A loses, which is .8104 .
b) [10 pts] If B has 1 dollar, then A has four, and so the first entry in the last row of $F R$ gives us the probability that A loses, which is .3839 .

24a) [5 pts] We have that the transition matrix is:
1
2
3 $\left[\begin{array}{ccc}.05 & .15 & .8 \\ .05 & .15 & .8 \\ 0 & 0 & 1\end{array}\right]$

As usual, we rearrange the matrix so that the absorbing state (3) is first:
3
1
2 $\left[\begin{array}{c|cc}1 & 0 & 0 \\ \hline .8 & .05 & .15 \\ .8 & .05 & .15\end{array}\right]$

So, we have:

$$
R=\left[\begin{array}{c}
.8 \\
.8
\end{array}\right] ; Q=\left[\begin{array}{cc}
.05 & .15 \\
.05 & .15
\end{array}\right]
$$

b) [10 pts] By definition, we have:
c) [5 pts] The probability that the disease eventually disappears is 1 , by the definition of an absorbing Markov chain! (Also, you can look in the matrix $F R$ to see that the probability that state 2 ends up in state 3 is 1 .)
d) [5 pts] The expected number of people infected before absorption into state 3 is the sum of the entries in row 2 of $F R, .0625+1.1875=1.25$.

CHAPTER 10 PRACTICE PROBLEMS

12) [15 pts total; 5 for the 'two repetitions,' and 10 for the 'long range trend']

$$
\begin{gathered}
D=\left[\begin{array}{ll}
.8 & .2
\end{array}\right] ; T=\left[\begin{array}{cc}
.7 & .3 \\
.2 & .8
\end{array}\right] \\
T^{2}=\left[\begin{array}{ll}
.7 & .3 \\
.2 & .8
\end{array}\right]\left[\begin{array}{ll}
.7 & .3 \\
.2 & .8
\end{array}\right]=\left[\begin{array}{cc}
.55 & .45 \\
.3 & .7
\end{array}\right]
\end{gathered}
$$

So now,

$$
D T^{2}=\left[\begin{array}{ll}
.8 & .2
\end{array}\right]\left[\begin{array}{cc}
.55 & .45 \\
.3 & .7
\end{array}\right]=\left[\begin{array}{ll}
.5 & .5
\end{array}\right]
$$

And this gives us the distribution after two repetitions. To find the longrange distribution, we need to find the equilibrium vector $V=[x y]$. (We know such a vector exists since this Markov chain is regular.) Now V must satisfy:

$$
\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
.7 & .3 \\
.2 & .8
\end{array}\right]=\left[\begin{array}{ll}
x & y
\end{array}\right]
$$

But this is equivalent to the system of equations:

Also, since the equilibrium vector is a probability vector, we have $x+y=1$, and so $x=1-y$. Plugging this into either of the above equations gives $y=\frac{3}{5}$, meaning $x=\frac{2}{5}$, and so we now have the long-range distribution: $V=\left[\begin{array}{cc}\frac{2}{5} & \frac{3}{5}\end{array}\right]$.
24) [5 pts] It is clear that the transition matrix below has no absorbing states (i.e., there are no 1 s on the diagonal). So, the associated Markov chain is not absorbing.

$$
\left[\begin{array}{cccc}
.5 & .1 & .1 & .3 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
.1 & .8 & .05 & .05
\end{array}\right]
$$

32) [10 pts]

$$
X_{0}=\left[\begin{array}{lll}
.4 & .4 & .2
\end{array}\right] ; A=\left[\begin{array}{ccc}
.8 & .15 & .05 \\
.25 & .55 & .2 \\
.04 & .21 & .75
\end{array}\right] ; A^{2}\left[\begin{array}{ccc}
.6795 & .213 & .1075 \\
.3455 & .382 & .2725 \\
.1145 & .279 & .6065
\end{array}\right]
$$

To find the distribution after two months (i.e., two iterations of the chain), just multiply the initial probability vector by the square of the transition matrix. This gives:

$$
X_{0} A^{2}=\left[\begin{array}{lll}
.4 & .4 & .2
\end{array}\right]\left[\begin{array}{lll}
.6795 & .213 & .1075 \\
.3455 & .382 & .2725 \\
.1145 & .279 & .6065
\end{array}\right]=\left[\begin{array}{lll}
.4329 & .2398 & .2733
\end{array}\right]
$$

34) [15 pts] To find the long-range distribution (i.e., equilibrium vector), use the same procedure outlined in exercise 12 . This gives a system of equations:

Combining like terms in each equation and then solving this system by the Gauss-Jordan method gives $x=\frac{47}{114}, y=\frac{32}{114}$, and $z=\frac{35}{114}$. So, the long-range trend is $\left[\begin{array}{llll}\frac{47}{114} & \frac{32}{114} & \frac{35}{114}\end{array}\right]$.

