1.116 [10pts] We seek the equation of the line in the form $y=m x+b$. We know that $m=-1$ (the slope) and the point $(2,4)$ is on the line in question. Thus $4=(-1) \times 2+b$ This gives $b=6$. The equation of the line is $y=-x+6$
1.122 [10pts] We seek the equation of the line in the form $y=m x+b$. We know that the points $(-2,3 / 4)$ and $(2 / 3,5 / 2)$ are on the line. Thus

$$
m=\frac{5 / 2-3 / 4}{2 / 3-(-2)}=\frac{7 / 4}{8 / 3}=21 / 32
$$

To find $b$, let us write that $(-2,3 / 4)$ is on the line, that is,

$$
\frac{3}{4}=\frac{21}{32} \times(-2)+b
$$

Multiplying both sides by 16 gives $12=-21+16 b$, that is, $b=33 / 16$. The equation of the line is $y=\frac{21}{32} x+\frac{33}{16}$ (We can now check that $(2 / 3,5 / 2)$ is indeed on this line).
1.138 [10pts] The lines with equations $y=m x+b$ and $y=m^{\prime} x+b^{\prime}$ are perpendicular if and only if $m \times m^{\prime}=-1$. The diagonal of the square $(-2,5),(4,5),(4,-1),(-2,-1)$ are the lines $D, D^{\prime}$ passing through $(-2,5),(4,-1)$ for $D$ and $(4,5),(-2,-1)$ for $D^{\prime}$ (draw a picture). The line $D$ has slope $m=(-1-5) /(4-(-2))=-1$. The line $D^{\prime}$ has slope $m^{\prime}=(-1-5) /(-2-4)=1$. As $m \times m^{\prime}=-1$, these two lines are indeed perpendicular.
1.220 (a) [4pts] Draw each of the two lines by finding the coordinates of two points on each of the line (e.g., give a value for $q$ and compute $p$ )
b) $[6 \mathrm{pts}]$ The equilibrium quantity and price are the coordinates of the intersection point of the supply and demand lines $p=1.4 q-.6, p=-2 q+3.2$ you drew in question (a). Thus these values must satisfy both equations. In particular, we must have $1.4 q-.6=-2 q+3.2$. This gives $3.4 q=3.8$, that is, $q=19 / 17 \approx 1.1$. From this we find the equilibrium price $p=-2 \times(19 / 17)+3.2 \approx 1$.
1.224 (a) [10pts] We model costs by a linear function $C(x)=m x+b$. We need to find the slope $m$ and the intercept $b$. We know that $C(10,000)=547,500$ and $C(50,000)=737,500$, that is,

$$
\left\{\begin{aligned}
547,500 & =m \times 10,000+b \\
737,500 & =m \times 50,000+b
\end{aligned}\right.
$$

Substracting the first line to the second gives $190,000=m \times 40,000$, that is, $m=19 / 4$. To find $b$, we report the value of $m$ in the first (or second) line above. This gives $547,500=$ $(19 / 4) \times 10,000+b$. Finally, we find $b=500,000$. The cost function is $C(x)=(19 / 4) x+500,000$.
(b) [5pts] The cost of producing 100,000 items is $C(100,000)=(19 / 4) \times 100,000+500,000=$ 975, 000 dollars.
(c) [2pts] The marginal cost is the slope of the cost function, i.e., $19 / 4=4.75$. That is, each additional item costs $\$ 4.74$ to produce.
1.38 (a) [3pts] Plot the data. A linear fit appears reasonable.
(b) [10pts] The least square line has equation $y=m x+b$ with $m, b$ satisfying the system (see page 31)

$$
\left\{\begin{array}{ccc}
\sum y & =n b+\left(\sum x\right) m \\
\sum x y & = & \left(\sum x\right) b+\left(\sum x^{2}\right) m
\end{array}\right.
$$

Here $n=5, \sum x=425, \sum y=6920, \sum x y=622,250, \sum x^{2}=36,375$.Thus the system giving $m$ and $b$ becomes

$$
\left\{\begin{array}{ccc}
6920 & = & 5 b+425 m \\
622,250 & = & 425 b+36,375 m
\end{array}\right.
$$

Multiply the fisrt line by 85 and substract the result to the second line. This gives $34,050=$ $250 m$ or $m=136.2$. Reporting this value in the first line yields $b=-10193$.
(c) [5pts] The coefficient of correlation (see page 35, you need to compute $\sum y^{2}=14555400$ ) is $r \approx .97$, which indicates a good fit to the data.
(d) [5pts] If the linear trend continues following the model equation $y=136.2 x-10193$, the household debt $y=3300$ (in dollars) will be reach for $x$ satisfying

$$
3300=136.2 x-10193
$$

That is, $x=54265 / 136.2 \approx 99$.
1.312 [ 5 pts$]$ The coefficient of correlation is -.05 . This means there appears to be no linear trend in this data.
2.112 [5pts] Perform ( -5 ) R1 $+2 R_{2}$ to get the system

$$
\left\{\begin{array}{rlc}
2 a+9 b & =3 \\
-31 b & = & -31
\end{array}\right.
$$

This gives $b=1$. Reporting in the first row gives $2 a+9=3$, that is, $a=-3$. The solution is $(-3,1)$ or, equivalently, $a=-3, b=1$. One should check that these values form indeed a solution of the original system (they do!).
2.124 [10pts] Follow the following steps.

$$
\begin{aligned}
& \left\{\begin{aligned}
2 x+y+z & =9 \\
-y+3 z & =11 \\
3 x-y+z & =9
\end{aligned} \quad\left(R_{1}+2 R_{2}\right)\right. \\
& \left\{\begin{aligned}
2 x+y+z & =9 \\
-y+3 z & =11 \\
5 y+z & =9
\end{aligned} \quad\left(3 R_{1}-2 R_{3}\right)\right. \\
& \left\{\begin{aligned}
2 x+y+z & =9 \\
-y+3 z & =11 \\
16 z & =64
\end{aligned} \quad\left(5 R_{2}+R_{3}\right)\right. \\
& \left\{\begin{aligned}
& 2 x+y+z= \\
&-y+3 z= \\
& z= \\
&-y
\end{aligned}\right. \\
& \left((1 / 16) R_{3}\right)
\end{aligned}
$$

From the last system, we easily find $z=4, y=1, x=2$. Hence $(2,1,4)$ is the solution, i.e., $x=2, y=1, z=4$. One checks this is correct by reporting the values in the original equations.

