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1. Brief Introduction to Probability

• Perform an experiment

• Set of all possible outcomes of an experiment is
called sample space, denoted Ω

Ex: Toss coin. ∃ 2 outcomes: Heads or Tails

∴ Ω = {H, T}

Definition: A probability, P , is a function P : S → [0,1],
S ⊂ Ω, st:

1. P (φ) = 0

2. P (Ω) = 1

3. P (A ∪ B) = P (A) + P (B) ∀A, B ⊂ Ω with A, B
disjoint

Ex:
P (H) = 1

2
,

P (T ) = 1
2
,

P (H or T ) = 1,
P (H and T ) = 0.

Definition: A random variable, X, is a real number rep-
resenting values of possible outcomes of an experiment.
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Ex: Let H = 1, T = 0. Flip a coin twice and count
the number of heads. Then there can be either 0,1 or
2 heads.

X = 0 No Heads
X = 1 One Head
X = 2 Two Heads

Thus,

P (X = 0) =
1

4
TT is only way to get no heads

P (X = 1) =
2

4
HT or TH

P (X = 2) =
1

4
HH only
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Definition: The expected value (or average value or
mean) of a (discrete) random variable is defined as:

E(X) =
∑
x∈Ω

xP (X = x)

(i.e. sum over all possible outcomes)

Ex: Roll a die. Observe face. What is expected out-
come?

X = 1 P (X = 1) = 1
6

X = 2 P (X = 2) = 1
6

X = 3 P (X = 3) = 1
6

X = 4 P (X = 4) = 1
6

X = 5 P (X = 5) = 1
6

X = 6 P (X = 6) = 1
6

∴ E(X) =
∑

x

xP (X = x)

= 1 · P (X = 1) + . . . + 6 · P (X = 6)

=
1

6
(1 + 2 + 3 + 4 + 5 + 6)

= 3.5

Note: Expectation is additive:

E(X + Y ) = E(X) + E(Y )
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2. Random Walk

Rd : d-dimensional Euclidean space

Zd = set of all d-tuples with integer coefficients
= {(z1, . . . , zd) : zi ∈ Z}
“d−dimensional lattice”

A particle starts at the origin of Zd. At each unit of time
the particle randomly selects one of its 2d nearest neigh-
bours and moves there. This is called a random walk.

For Example, on Z2:

tt
tt
t

tt
tt
t

tt
tt
t

tt
tt
t

tt
tt
t

At each step the particle can move either up, down, left
or right. This is sometimes called a drunkard’s walk.
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• A “drunk” steps out of the bar and is so intoxicated
that he stumbles at random.

• Imagine the bar situated at the centre of a large
grid of streets.

bar

home

• With each step the drunk is equally likely to go
north, south, east or west.

• Imagine that the drunk also has a home.

Now, suppose that we release the drunk and let him
walk (randomly) and that

• At the bar, he has a drink and leaves at the next
time step.

• At home, he has a nap and leaves at the next time
step.
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CLAIM

The drunkard returns to the bar infinitely often; but also
returns home infinitely often.

IN FACT

• In one dimension, the drunk will return to the bar
infinitely often.

• In two dimensions, the drunk will return to the bar
infinitely often.

• In three dimensions, the drunk will not return to
the bar infinitely often. That is, he will go to the
bar one final time, have his final drink, and wander
off . . . never to return again.
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More formally,

a simple random walk on Zd is a random walk in which
the probability of moving from a point to any one of its
2d nearest neighbours is 1

2d
.

e.g.

%%

%%

t ttttt t
Simple random walk on Z3

Choose any neighbour with probability 1
6

Now, let’s begin a simple random walk on Zd starting at
the origin.

Let pesc = Pr{walk never returns to 0}

Definition: A random walk is recurrent iff pesc = 0.
A random walk is transient iff pesc > 0.

We can now formulate the theorem of Pólya.
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3. Theorem: Pólya, 1928

A simple random walk on the d-dimensional lattice Zd is
recurrent for d = 1 and d = 2, but is transient for d ≥ 3.

That is, for d = 1,2 it is “certain” to return to the ori-
gin, but for d ≥ 3 it is not.

Proof: I will prove this theorem for the d = 1,2 recur-
rent cases and the d = 3 transient case. The d > 3
cases are very similar to the d = 3 case except for some
messier algebra.

But first . . .
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Recurrence ≡ infinite expected number of returns

• u = Pr{random walk started at 0 returns to 0}

• Pr{walker is there exactly k times} = uk−1(1− u)

• m = expected number of times at 0

∴ m =
∞∑

k=1

k · uk−1(1− u)

= (1− u)
∞∑

k=1

k · uk−1

= (1− u)
∞∑

k=1

d

du
uk

= (1− u)
d

du

∞∑
k=1

uk

= (1− u)
d

du

1

1− u

=
1

1− u

∴ if m = ∞, then u = 1 and so the walk is recurrent
if m < ∞, then u < 1 and so the walk is transient
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Alternatively,

let un = Pr{walk starting at 0 is at 0 on nth step}
u0 = 1

Define a random variable as follows:

en =

{
1, if walker is at 0 at time n

0, otherwise

Thus, T =
∞∑

n=0

en is the total number of times at 0.

So, m = E(T ) =
∞∑

n=0

E(en)

But, E(en) = 1 · un + 0 · (1− un)

So,

m =
∞∑

n=0

un

recurrence ⇔
∑

un diverges
transience ⇔

∑
un converges
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D = 1
To return to origin walker must take same number of
steps left as right.

∴ only even return times are possible

u2n =
(
1
2

)2n ·#possible paths

u2n =
(2n

n

) (
1
2

)2n

Using the well-known Stirling Formula, we can get an
asymptotically equivalent expression for u2n.

Stirling Formula: n! ≈
√

2πn e−n nn

∴ u2n =
(2n)!

n!(2n− n)!

1

22n

≈
√

2π2n e−2n (2n)2n

(
√

2πn e−n nn)2 22n

=
1

√
πn

Thus, ∑
n

u2n ≈
∑

n

1
√

πn
which diverges

∴ Simple rw in one dimension is recurrent. �
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D = 2
To return the walker must take . . .

• same number of steps left as right, AND

• the same number of steps up as down.

∴ every path that returns in 2n steps has probability(
1
4

)2n
of occurring

The number of paths with k steps left, k steps right, n−k

steps up, n−k steps down is
( 2n
k,k,n−k,n−k

)
:= (2n)!

k!k!(n−k)!(n−k)!

u2n =

(
1

4

)2n n∑
k=0

(2n)!

k!k!(n− k)!(n− k)!

=

(
1

4

)2n n∑
k=0

(2n)!

n!n!

n!n!

k!k!(n− k)!(n− k)!

=

(
1

4

)2n (2n

n

) n∑
k=0

(n
k

)2

Note:
n∑

k=0

(n
k

)2
=
(2n

n

)
.

So, u2n =
(

1
22n

(2n
n

))2
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Thus, m =
∑

n

u2n ≈
∑

n

1

πn
= ∞

(It is just the square of the one dimensional result.)

∴ Simple rw in two dimensions is also recurrent. �
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D = 3
Similarly, to return to the origin, the walker must take

• same number of steps left as right, AND

• same number of steps up as down, AND

• same number of steps forward as backward

∴ every path that returns in 2n steps has probability(
1
6

)2n
of occurring

The number of paths with k steps left, k steps right, j
steps up, j steps down, n− k− j steps forward, n− j− k
steps backward is( 2n

k, k, j, j, n− k − j, n− k − j

)
:=

(2n)!

k!k!j!j!(n− k − j)!(n− k − j)!
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So,

u2n =
1

62n

∑
j,k

j+k≤n

(2n)!

k!k!j!j!(n− j − k)!(n− j − k)!

=
1

22n

(2n

n

) ∑
j,k

j+k≤n

(
1

3n

n!

k!j!(n− k − j)!

)2

Now,

1

3n

( n

k, j, n− j − k

)
=

1

3n

n!

k!j!(n− j − k)!
= probability of placing n balls in 3 boxes

This is maximized when k, j, (n− k − j) are as close to
n
3

as possible.
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So,

u2n ≤
1

22n

(2n

n

)( 1

3n

n![
n
3

]
!
[

n
3

]
!
[

n
3

]
!

)∑
j,k

1

3n

n!

k!j!(n− j − k)!


︸ ︷︷ ︸

=1 since it is a distribution

∴ u2n ≤
1

22n

(2n

n

)( 1

3n

n!([
n
3

]
!
)3
)

However, Stirling ⇒ u2n ≤ K
n3/2 for some constant K ∈ R+

So,

m =
∑

n

u2n ≤ K
∑

n

1

n3/2
< ∞

∴ Simple rw in three dimensions is transient. �
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4. Self-Avoiding Random Walk

A self-avoiding random walk is simply a random walk
with the additional constraint that you cannot revisit a
previously visited site.

One application of self-avoiding random walks is as a
model for polymers.

• A polymer is a chain of molecules known as monomers.

• Monomers attach “at random angles” to the end
of the chain.

• A monomer cannot attach at an already occupied
spot.

For example, suppose that we have a polymer in which
monomers are allowed to attach to the chain only at
angles which are multiples of 45◦. In this case, we are
working on an “honeycomb lattice”.
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Definition: A self-avoiding random walk (SARW) of length

n in Zd is a sequence ω of points such that

1. ω = (ω0, ω1, . . . , ωn) where ωi ∈ Zd

2. ω0 = 0

3. ‖ωj − ωj−1‖ = 1 for j = 1, . . . , n and distance is
measured “on the lattice”

4. ωi 6= ωj for i 6= j

1, 2, 3 = RW
1, 2, 3 + 4 = SARW

Although SARWs are similar to RWs, they are tough to
analyze. There are still many aspects of them that are
unknown.

Ωn : set of SARWs of length n

Cn = |Ωn| = #(Ωn) = card(Ωn)
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Open Question

“What is Cn?”
“How many elements does Ωn have?”
“How many n-step self-avoiding random walks are there?”

Some Partial Answers

• There exist (2d)n simple random walks of length n.
So,

Cn ≤ (2d)n

• Don’t let it visit it’s last site. (i.e. no immediate
returns) ∴ ∃ at most 2d−1 nearest unvistited neigh-
bours. So,

Cn ≤ 2d(2d− 1)n−1

• Let the random walk move only in the postive x
direction. (Or in any one direction for that matter.)
This is clearly self-avoiding, so

dn ≤ Cn
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Bounds on Number of n-step SARWs

dn ≤ Cn ≤ 2d(2d− 1)n−1

CONJECTURE

There is some number β with

Cn ≈ βn

WELL KNOWN: lim
n→∞

C1/n
n exists

∴ lim
n→∞

C1/n
n = β

FROM ABOVE: d ≤ β ≤ 2d− 1.

UNKNOWN: β
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