
1 Variation of Brownian motion

Let f : [a, b] → R be a real-valued function defined on the interval a ≤ t ≤ b, and suppose
that ∆n := {a = t0 < t1 < · · · tn−1 < tn = b} is a partition of [a, b]. Define the mesh of the
partition ∆n by

||∆n|| := max
1≤i≤n

(ti − ti−1).

For every p > 0, let

Qp(f ; a, b, ∆n) :=
n∑

i=1

|f(ti)− f(ti−1)|p .

Our goal is to investigate the limiting behaviour of Qp(B; a, b, ∆n) where B is a Brownian
motion. There are a number of different notions of “limit” that need to be considered,
however.

Definition 1.1. The true pth variation of f on [a, b] is defined as

Vp(f ; a, b) := sup
∆n

Qp(f ; a, b, ∆n)

where the supremum is over all possible partitions of [a, b].

If Vp(f ; a, b) < ∞, then we say that f has finite true pth variation on [a, b]. In the
particular case when p = 1, if V1(f ; a, b) < ∞, we say that f is of bounded variation on [a, b]
or has finite total variation on [a, b].

It is known (see Taylor, Duke Math. J., 1972) that for Brownian motion

Vp(B; a, b) < ∞ ⇔ p > 2.

The case p = 2 is of particular interest. Although the true 2nd variation of the Brownian
path is unbounded, if instead of considering the supremum over all possible partitions, we
restrict ourselves to those sequences of partitions {∆n} for which ||∆n|| → 0 then something
quite different is found.

Theorem 1.2. If {∆n, n = 1, 2, 3, . . .} is a sequence of partitions of [a, b], then

Q2(B; a, b, ∆n) → b− a in L2

as ||∆n|| → 0.

Proof. To begin, notice that
n∑

i=1

(ti − ti−1) = b− a.

Let

Yn =
n∑

i=1

∣∣Bti −Bti−1

∣∣2 − (b− a) =
n∑

i=1

[∣∣Bti −Bti−1

∣∣2 − (ti − ti−1)
]

=
n∑

i=1

Xi
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where
Xi =

∣∣Bti −Bti−1

∣∣2 − (ti − ti−1),

and note that

Y 2
n =

n∑
i=1

n∑
j=1

Xi Xj =
n∑

i=1

X2
i + 2

∑
i<j

Xi Xj.

The independence of the Brownian increments implies that E(XiXj) = 0 for i 6= j; hence,

E(Y 2
n ) =

n∑
i=1

E(X2
i ).

But

E(X2
i ) = E

(
Bti −Bti−1

)4 − 2(ti − ti−1)E
(
Bti −Bti−1

)2
+ (ti − ti−1)

2

= 3(ti − ti−1)
2 − 2(ti − ti−1)

2 + (ti − ti−1)
2

= 2(ti − ti−1)
2

since the fourth moment of a normal random variable with mean 0 and variance ti − ti−1 is
3(ti − ti−1)

2. Therefore,

E(Y 2
n ) =

n∑
i=1

E(X2
i ) = 2

n∑
i=1

(ti − ti−1)
2 ≤ 2 ||∆n||

n∑
i=1

(ti − ti−1) = 2(b− a) ||∆n|| → 0

as ||∆n|| → 0 from which we conclude that Yn → 0 in L2; that is, Q2(B; a, b, ∆n) → b− a in
L2 as ||∆n|| → 0.

As a result of this theorem, we define the quadratic variation of Brownian motion to be
this L2-limit.

Definition 1.3. The quadratic variation of a Brownian motion B on the interval [a, b] is
defined to be

Q2(B; a, b) := lim
||∆n||→0

Q2(B; a, b, ∆n) in L2.

Corollary 1.4. If {∆n, n = 1, 2, 3, . . .} is a sequence of partitions of [a, b] with

∞∑
n=1

||∆n|| < ∞,

then
Q2(B; a, b, ∆n) → b− a a.s.

Proof. Suppose that ε > 0. It follows from Chebychev’s inequality that

∞∑
n=1

P (|Yn| > ε) ≤ 1

ε

∞∑
n=1

≤ 2(b− a)

ε

∞∑
n=1

||∆n|| < ∞

using the notation in the proof of the previous theorem. By the Borel-Cantelli Lemma, we
therefore conclude that Yn → 0 a.s.
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Remark. For example, if the interval [0, 1] is partitioned by the dyadic rationals

∆n =

{
k

2n
, k = 0, . . . , 2n

}
,

then
∞∑

n=1

||∆n|| =
∞∑

n=1

1

2n
< ∞

so that Q2(B; 0, 1, ∆n) → 1 a.s.

Corollary 1.5. If {∆n, n = 1, 2, 3, . . .} is a sequence of partitions of [a, b], then

Q1(B; a, b, ∆n) =
n∑

i=1

∣∣Bti −Bti−1

∣∣ →∞ a.s.

as ||∆n|| → 0. In other words, almost all Brownian paths are of unbounded variation on
every time interval.

Proof. Suppose to the contrary that B is a function of bounded variation, and let V1(B; a, b)
denote the total variation of B on the interval [a, b]. It then follows that

n∑
i=1

∣∣Bti −Bti−1

∣∣2 ≤ max
1≤i≤n

|Bti −Bti−1
|

n∑
i=1

∣∣Bti −Bti−1

∣∣ ≤ V (a, b) max
1≤i≤n

|Bti −Bti−1
|.

Since B is continuous a.s. on [a, b], it is necessarily uniformly continuous on [a, b]. Therefore,

max
1≤i≤n

|Bti −Bti−1
| → 0 as ||∆n|| → 0

from which we conclude that

n∑
i=1

∣∣Bti −Bti−1

∣∣2 → 0 a.s.

This is a contradiction to the previous corollary, and establishes the result.
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