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Normal Distribution

The formula
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)

describes a “bell-curve” centred at µ with variance σ2 (or spread σ).

A random variable N is normally distributed with mean µ and variance σ2, written N (µ, σ2),
if N has this density.

That is, if
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Central Limit Theorem
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=
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D−→ N (0, 1)

That is, the distribution of our random walk, normalized by
√
n, converges to the distribution

of a normal random variable.

If A ⊆ R open interval, then
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Brownian Motion

A one-dimensional real-valued stochastic process {Bt, t ≥ 0} is a Brownian motion if

• B0 = 0 and the function t 7→ Bt is continuous (with probability one),

• for any t0 < t1 < . . . < tn the increments Bt0 , Bt1 −Bt0 , . . . , Btn−1 −Btn are independent

• for any s, t ≥ 0, the increment Bt+s −Bs ∼ N (0, t) is normally distributed.

1



Online Resources

Eric Weisstein’s World of Mathematics

• http://scienceworld.wolfram.com/physics/BrownianMotion.html

• http://mathworld.wolfram.com/RandomWalk1-Dimensional.html

• http://mathworld.wolfram.com/WeierstrassFunction.html

Brownian motion applets illustrating various distributional properties

• http://www.stat.umn.edu/∼charlie/Stoch/brown.html

• http://www.ms.uky.edu/∼mai/java/stat/brmo.html

Some information about Robert Brown

• http://dbhs.wvusd.k12.ca.us/Chem-History/Brown-1829.html

A Brownian motion video! from the BBC

• http://www.bbc.co.uk/science/scienceshack/backcat/multimedia/vibrownianmotion.shtml

Math Talks for Undergraduates (Nam-Gyu Kang)

• http://www.math.yale.edu/∼nk36/bm.html
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