Brownian Motion and the Heat Equation

Michael J. Kozdron
Lectures prepared for ACSC 456 (Winter 2008)

1 Thermodynamics and the heat conduction equation
of Joseph Fourier

Thermodynamics is a branch of physics and chemistry that studies the effects of changes in
temperature, pressure, and volume on physical systems at the macroscopic scale by analyzing
the collective motion of their particles using statistics. Roughly, heat means “energy in
transit” and dynamics relates to “movement”; thus, in essence thermodynamics studies
the movement of energy and how energy instills movement. Historically, thermodynamics
developed out of need to increase the efficiency of early steam engines. The starting point for
most thermodynamic considerations are the laws of thermodynamics which postulate that
energy can be exchanged between physical systems as heat or work. The first established
principle of thermodynamics (which eventually became the Second Law) was formulated
by Sadi Carnot in 1824. By 1860, as found in the works of those such as Rudolf Clausius
and William Thomson, there were two established “principles” of thermodynamics. As the
years passed, these principles turned into “laws.” By 1873, for example, the theoretical
physicist/mathematician Josiah Willard Gibbs clearly stated that there were two absolute
laws of thermodynamics.

In the early 19th century, while the study of thermodynamics was still in its infancy, the
French scientist Jean Baptiste Joseph Fourier presented a remarkable formula describing the
conduction of heat in a solid. In 1807, when Fourier presented this work, opinions were still
divided about the nature of heat. However, heat conduction due to temperature differences
and heat storage and the associated specific heat of materials had been experimentally es-
tablished. Nonetheless, it would take many years for Fourier’s theories to become widely
accepted, and in 1822 he published Théorie Analytique de la Chaleur (or the Analytic The-
ory of Heat) introducing his methods to a broad international audience. Over the ensuing
century and a half, Fourier’s methods began to be applied to analyze problems in many fields
such as: heat transfer, electricity, chemical diffusion, fluids in porous media, genetics, and
economics. In fact, Fourier’s heat conduction equation continues to constitute the conceptual
foundation on which rests the analysis of many physical, biological, and social systems.

In its simplest formulation, Fourier’s equation in one space variable models heat conduc-
tion in a rod. Consider a rod made of a single homogeneous conducting material of length
L parallel to the horizontal axis (or z-axis) so that 0 < x < L describes the position of the
rod.



Let k denote the thermal conductivity of the rod. Recall that thermal conductivity is
the ability of a material to conduct heat and is measured in units of Watts per Kelvin-
metre. Most good electrical conductors are also good heat conductors; for example, copper,
aluminum, gold, iron, silver, lead, tin, platinum, nickel, tungsten.

Fort > 0 and 0 < o < L, let u(z,t) denote the temperature of the rod at time ¢ at
position x and suppose that u(z,0) = g(z) denotes the initial temperature distribution of
the rod. We dictate that the sides of the rod are perfectly insulated so that no heat passes
through them. It is most convenient to also assume that the temperature at the ends of the
rod is kept constant (and for simplicity we assume this temperature to be 0) which leads to
the boundary conditions u(0,¢) = 0 and u(L,t) = 0.

Fourier showed that the function u(x,t) satisfies the partial differential equation
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subject to the initial conditions
u(z,0) = g(z), u(0,t)=0, wu(L,t)=0.

He also showed how to solve this equation using the technique of separation of variables. In

fact,
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This method of solution (and its generalizations) is now considered standard undergraduate
material and is taught in a first course on differential equations such as MATH 217. It should
also be noted that this solution is not as “obvious” as it might seem since there is no a prior:
guarantee that the sum on the right side of (1) converges. It took over 50 more years of
research to establish the theoretical foundations of these so-called Fourier series.
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2 Robert Brown’s erratic motion of pollen

In the summer of 1827, the Scottish botanist Robert Brown observed that microscopic pollen
grains suspended in water move in an erratic, highly irregular, zigzag pattern. Following
Brown’s initial report, other scientists verified the strange phenomenon. Brownian motion
was apparent whenever very small particles were suspended in a fluid medium, for example
smoke particles in air. It was eventually determined that finer particles move more rapidly,
that their motion is stimulated by heat, and that the movement is more active when the
fluid viscosity is reduced.

However, it was only in 1905 that Albert Einstein, using a probabilistic model, could
provide a satisfactory explanation of the Brownian motion. He asserted that the Brownian
motion originates in the continual bombardment of the pollen grains by the molecules of
the surrounding water, with successive molecular impacts coming from different directions



and contributing different impulses to the particles. As a result of the continual collisions,
the particles themselves had the same average kinetic energy as the molecules. Thus, he
showed that Brownian motion provided a solution (in a certain sense) to Fourier’s famous
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Note that in 1905, belief in atoms and molecules was far from universal. In fact, Einstein’s
“proof” of Brownian motion helped provide convincing evidence of atomic existence. Einstein
had a busy 1905, also publishing seminal papers on the special theory of relativity and the
photoelectric effect. In fact, his work on the photoelectric effect won him a Nobel prize.
Curiously, though, history has shown that the photoelectric effect is the least monumental of
his three 1905 triumphs. The world at that time simply could not accept special relativity!

Since Brownian motion described the physical trajectories of pollen grains suspended in
water, Brownian paths must be continuous. But they were seen to be so irregular that the
French physicist Jean Perrin believed them to be non-differentiable. (The German mathem-
atician Karl Weierstrass had recently discovered such pathological functions do exist. Indeed
the continuous function

h(z) = Z b" cos(a"mx)

where a is odd, b € (0,1), and ab > 1 + 37/2 is nowhere differentiable.) Perrin himself
worked to show that colliding particles obey the gas laws, calculated Avogadro’s number,
and won the 1926 Nobel prize.

Finally, in 1923, the mathematician Norbert Wiener established the mathematical exist-
ence of Brownian motion by verifying the existence of a stochastic process with the required
properties.

3 Albert Einstein’s proof of the existence of Brownian
motion

We now summarize Einstein’s original 1905 argument. Suppose there are K particles sus-
pended in a liquid. In a short time interval T', the x-coordinate of a single particle will
increase by € where € has a different value for each particle. For the value of €, a certain
probability law will hold.

In the time interval T, the number dK of particles which experience a displacement
between ¢ and € + Ae can be expressed by the equation

dK = Ky(e)de

where ¢ only differs from 0 for very small values of ¢ and satisfies



Since ¢ is an even function, we see that
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We will now investigate how the coefficient of diffusion depends on ¢ restricted to the case
where the number of particles per unit volume depends on x and ¢ only. Let f(x,t) denote
the number of particles per unit volume at location = at time ¢ so that
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Our goal is to now calculate the distribution of particles a short time later. By the definition
of p(e), we have
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By Taylor’s theorem (ignoring higher inﬁni_t:smals), we have in one case
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Substituting (4) into (2) yields
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using the properties of ¢(g) above.
By equating the two approximations, one with respect to time (3), and the other with

respect to (random) displacements (5), we obtain the partial differential equation
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which is the well-known differential equation for diffusion (i.e., the heat equation) where o
is the coefficient of diffusion (i.e., thermal conductivity). From this it may be concluded that
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Einstein followed the standard assumption in statistical mechanics that the “movements of
the single particles are mutually independent,” and that the “movements executed by a
particle in consecutive time intervals are independent.” Naturally, the path of the particle
is continuous. Notice that the formula for f(xz,t) is K times a N(0,2at) density function.
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4 Mathematical definition of Brownian motion and the
solution to the heat equation

We can formalize the standard statistical mechanics assumptions given above and define
Brownian motion in a rigorous, mathematical way. A one-dimensional real-valued stochastic
process {W;,t > 0} is a Brownian motion (with variance parameter o2) if

e Wy =0 and the function ¢ — W; is continuous (with probability one),

e for any typ < t; < ... < t, the increments W,,, W, — W,,,..., W, , — W, are inde-
pendent, and

e for any s, t > 0, the increment W, — W, ~ N(0, 0%t) is normally distributed.

We will be interested in the case where the variance parameter is 02 = 1 in which case we
have W, ~ N(0,t) for each ¢ > 0. We can also define Brownian motion starting at € R by
setting B; = W, 4+ x for each t > 0.

Suppose that {B;,t > 0} is a Brownian motion starting at z. Since B, ~ N (z,t), we
define the transition density by
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Informally, p(t;x,y) represents the probability that Brownian motion starting at x will be

at position y at time t. Of course, p(t;z,y) is a density function for a continuous random
variable and so we must interpret it to mean

P{B, € V|By =z} = / p(t;z,y) dy
174
for any set V C R.

Exercise. Consider Brownian motion starting at 0. The transition density for B; can
therefore be written as

p(t;0,2) =

1
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Notice that they are the same!

t;0,z).

Thus, we see that the transition density for Brownian motion satisfies the heat equation,
and so motivated by Einstein’s argument, it seems natural to guess that Brownian motion
should solve the heat equation.



Theorem. The unique bounded solution to the heat equation
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subject to the initial conditions
u(z,0) = g(z), u(0,t)=0, wu(L,t)=0.

is given by

u(x,t) =E [g(Bt) ) ](th) | By = $]
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where

0, otherwise,

and 7 is the (random) first time that BM hits either end of the rod.

Note that using the transition density we can write (for t < 7)
[e.e]

E[g(B.)| Bo =] = / 9(y)P{B. = y| By = a} dy = / o()plt; 7, ) dy.
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5 Further Reading

For an introduction to partial differential equations and techniques for solving a variety of
diffusion-type problems, the book by Farlow [1] is recommended. He uses a lot of pictures
and intuition to motivate the derivations. Einstein’s famous 1905 papers have been reprin-
ted numerous times. A revision of [4] released in 2005 to commemorate the centenary of
Einstein’s annus mirabilis includes commentary and a new introduction. The probabilistic
connections between Brownian motion and the heat equation are developed in detail by
Lawler in [2], and a nice historical account of Fourier’s work and related developments in
thermodynamics at the start of the 19th century is given by Narasimhan [3] (whose paper
is freely available online).
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