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Some Statistical Mechanics
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Some Models From Statistical Mechanics

• The self-avoiding walk is a model of polymer chains introduced in 1949 by the

Nobel Prize-winning chemist Paul Flory.

• The Ising model was invented by Wilhelm Lenz in 1920 and studied by his

student Ernst Ising as a model of ferromagnetism; more generally, it is a simple

model of an interacting system.

• The loop-erased random walk is a mathematical model introduced in 1980 by

Greg Lawler in an attempt to understand the self-avoiding walk. It was

eventually proved to be in a different universality class than the SAW, but is an

interesting model in its own right. In the mid-90s it was proved to be

intimately connected with the generation of uniform spanning trees.

• Percolation is a model of fluid flow through a porous medium introduced by

Simon Broadbent and John Hammersley in 1957.
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The Picture That Says It All!

0

γ[0, t]
gt : Ht → H

Ut = gt(γ(t))

• The simple curve γ : [0,∞) → H evolves from γ(0) = 0 to γ(t).

• The curve γ never re-visits R; that is, γ(0, t) ⊂ H.

• Ht := H \ γ(0, t] denotes the slit plane.

• gt : Ht → H is a conformal map;

• Ut := gt(γ(t)) is the unique point on R that is the image of the tip, γ(t).

• t 7→ Ut is continuous.
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What is SLE?

The evolution of the curve γ(t), or more precisely, the evolution of the conformal

transformations gt : Ht → H, can be described by the Loewner equation.

0

γ[0, t]
gt : Ht → H

Ut = gt(γ(t))

We (uniquely) normalize gt and (re-)parametrize γ in such a way that as z → ∞,

gt(z) = z +
2t

z
+O

(

|z|−2
)

.

Theorem. (Loewner 1923)

If z ∈ H with z 6∈ γ[0,∞], then the conformal transformations {gt(z), t ≥ 0}
satisfy the IVP

∂

∂t
gt(z) =

2

gt(z)− Ut
, g0(z) = z.
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Stochastic Loewner Evolution (aka Schramm-Loewner Evolution)

The natural thing to do is to start with a continuous function t 7→ Ut and solve the

Loewner equation.

Solving the Loewner equation gives gt which conformally maps Ht to H where

Ht = {z : gt(z) is well-defined} = H \Kt.

Ideally, we would like g−1
t (Ut) to be a well-defined curve so that we can define

γ(t) = g−1
t (Ut) and Kt = γ(0, t].

While studying loop-erased random walk, Schramm’s idea was to let Ut be a

Brownian motion! (In retrospect, it is natural.)

SLE with parameter κ is obtained by choosing Ut =
√
κBt where Bt is a standard

one-dimensional Brownian motion.
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Stochastic Loewner Evolution (aka Schramm-Loewner Evolution)

Definition. SLEκ in the upper half plane is the random collection of conformal

maps gt obtained by solving the Loewner equation

∂tgt(z) =
2

gt(z)−
√
κBt

, g0(z) = z.

It is not obvious that g−1
t is well-defined at Ut so that the curve γ can be defined.

A deep theorem due to Rohde and Schramm proves this is true.

Think of γ(t) = g−1
t (

√
κBt).

SLEκ is the random collection of conformal maps gt (complex analysts) or the

curve γ[0, t] being generated in H (probabilists)!

Although changing the variance parameter κ does not qualitatively change the

behaviour of Brownian motion, it drastically alters the behaviour of SLE.
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What does SLE look like?

Theorem. (Rohde-Schramm 2001; Lawler-Schramm-Werner 2004)

With probability one,

• 0 < κ ≤ 4: γ(t) is a random, simple curve avoiding R.

• 4 < κ < 8: γ(t) is not a simple curve. It has double points, but does not cross

itself! These paths do hit R.

• κ ≥ 8: γ(t) is a space filling curve! It has double points, but does not cross

itself. Yet it is space-filling!!

Theorem. (Beffara 2004, 2008)

With probability one, the Hausdorff dimension of the SLEκ trace is

min
{

1 +
κ

8
, 2
}

.
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κ = 1 κ = 2
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κ = 8
3 κ = 3
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Chordal SLE in D

Technically, we have defined chordal SLE. That is, SLE connecting two distinct

boundary points of a simply connected domain.

Another process known as radial SLE connects a boundary point with an interior

point.

Schramm originally defined chordal SLEκ in H from 0 to ∞. We’ve outlined his

construction.

He then defined chordal SLEκ in D from z to w to be the image of SLEκ in H

under a conformal transformation taking 0 7→ z and ∞ 7→ w.

Everything is defined up to time reparametrization.

There are other constructions of chordal SLE in D. The original way could be

described as the “infinitesmal approach” and uses a particular SDE. Another way is

to construct a finite measure on curves via martingales and a particular

Radon-Nikodym derivative.

Either way, SLE is conformally invariant.
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Proving Convergence Results with SLE

The following martingale principle is essentially due to Smirnov and is one way to

prove convergence to SLE. (In fact, it is the only known way.)

Martingale Observable Principle. If γ is a random curve that admits a non-trivial

conformal martingale

Mt(x) =M(x;D, γ(t), z, w),

then γ is given by SLE with parameter κ derived from Mt.

• For each model, one needs to find a suitable martingale observable.

• At the moment, there is no general “template” for constructing such

martingales.

• Even if one has a martingale observable, there are still technical questions

particular to each model about what to do with it and how to actually carry

through the proof of convergence.

• In many cases, the martingale observable at time t→ ∞ reduces to the

probability of a particular event. Computing that probability is often a key step

in the proofs of convergence.
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The Conformal Invariance Prediction

In 1994, Aizenman, Langlands, Pouliot, and Saint-Aubin conjectured, roughly, that

if Λ is a planar lattice with suitable symmetry, and we perform critical percolation

on Λ, then as the lattice spacing tends to 0, certain limiting probabilities are

invariant under conformal transformations.

There is a crude analogy to simple random walk here. Simple random walk on any

suitable lattice converges to Brownian motion.

The prediction has only been proved for site percolation on the triangular lattice.
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Example: Site Percolation on the Triangular Lattice

Site percolation on the triangular lattice can be identified with “face percolation”

on the hexagonal lattice (which is dual to the triangular lattice).
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The Discrete Percolation Exploration Path

Consider a simply connected, bounded hexagonal domain with two distinguished

external vertices x and y.

Colour all the hexagons on one half of the boundary from x to y white, and colour

all the hexagons on the other half of the boundary from y to x red.

For all remaining interior hexagons colour each hexagon either red or white

independently of the others each with probability 1/2 (i.e., perform critical site

percolation on the triangular lattice).

There will be an interface separating the red cluster from the white cluster.

One way is to draw the interface always keeping a red hexagon on the right and a

white hexagon on the left.

Another way to visualize the interface is to swallow any islands so that the domain

is partitioned into two connected sets.
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Crossing Probabilities for the Discrete Domain

Consider a simply connected, bounded hexagonal domain D with four distinguished

external vertices z1, z2, z3, z4 ordered counterclockwise. This divides the boundary

into four arcs, say A1, A2, A3, A4.

For all hexagons in D colour each hexagon either red or white independently of the

others each with probability 1/2 (i.e., perform critical site percolation on the

triangular lattice).

There will necessarily be either a red (open) crossing from A1 to A3 or a white

crossing from A2 to A4.
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Approximating the Continuous

Suppose that D ⊂ C is a simply connected, bounded Jordan domain containing the

origin, and let z1, z2, z3, z4 be four points ordered counterclockwise around ∂D.

This divides ∂D into 4 arcs, say A1, A2, A3, A4.

Overlay a suitable lattice with spacing δ over D and consider the resulting

lattice-domain Dδ . Identity the original arcs with lattice-domain arcs

Aδ
1, A

δ
2, A

δ
3, A

δ
4.

Perform critical percolation on Dδ .

Goal: To understand what happens as δ ↓ 0?

Question 1: What is the probability that there is a red crossing from Aδ
1 to Aδ

3?

Call this P (D; δ) = P (D, z1, z2, z3, z4; δ).

Question 2: What is the law or distribution of the scaling limit of the discrete

interface?
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John Cardy’s Formula

Cardy’s Prediction/Formula (1992):

lim
δ→0

P (D; δ) =
Γ(2/3)

Γ(4/3)Γ(1/3)
η1/32F1(1/3, 2/3; 4/3; η)

where 2F1 is the hypergeometric function and

η =
(w1 − w2)(w3 − w4)

(w1 − w3)(w2 − w4)

is the cross-ratio with wj = φ(zj) where φ : D → D is the unique conformal

transformation with φ(0) = 0, φ′(0) > 0.

φ : D → D

D
D

w1

w2

w3

w4

z1

z2

z3

z4
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Lennart Carleson’s Observation

Using properties of the hypergeometric function one can write

Γ(2/3)

Γ(4/3)Γ(1/3)
z1/32F1(1/3, 2/3; 4/3; z) =

Γ(2/3)

Γ(1/3)2

∫ z

0
w−2/3(1− w)−2/3 dw

Furthermore, the function

z 7→ Γ(2/3)

Γ(1/3)2

∫ z

0
w−2/3(1− w)−2/3 dw

is the Schwarz-Christoffel transformation of the upper half plane onto the

equilateral traingle with vertices at 0, 1, and (1 + i
√
3)/2.
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Lennart Carleson’s Observation

Hence, if D is this equilateral triangle, then Cardy’s prediction takes the

particularly nice form

lim
δ→0

P (D; δ) = x (∗)

where x is the following:

z1 = 1

z2 = (1 + i
√

3)/2

z3 = 0
z4 = x

A1A2

A3
A4

Theorem: (Smirnov 2001) Cardy’s prediction holds for critical site percolation on

the trianglular lattice. Smirnov proved (∗) and conformal invariance gave it for all

Jordan domains D.
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The Scaling Limit of the Exploration Process

Thanks to the work of Smirnov and Werner, there is now a precise description of

the scaling limit of the interface (i.e., the exploration process).

Suppose that (D, z, w) is a Jordan domain with distinguished boundary points z

and w.

Let (Dδ , zδ , wδ) be a sequence of hexagonal lattice-domains with spacing δ which

approximate (D, z, w).

(Technically, (Dδ, zδ, wδ) converges in the Carathéodory sense to (D, z, w) as

δ ↓ 0.)

Let γδ = γδ(Dδ , zδ, wδ) denote the spacing δ exploration path.

As δ ↓ 0, the sequence γδ converges in distribution to SLE6 in D from z to w.
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Summary of Convergence Results

• Loop-erased random walk converges to SLE2 (Lawler, Schramm, Werner)

• Self-avoiding walk should converge to SLE8/3 (Lawler, Schramm, Werner)

• Interfaces in the Ising model converge to SLE3 (Smirnov)

• Level lines of the discrete Gaussian free field converge to SLE4 (Schramm,

Sheffield)

• Percolation exploration path converges to SLE6 (Smirnov)

• UST Peano curve converges to SLE8 (Lawler, Schramm, Werner)
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A Rate of Convergence of LERW to SLE(2)

• Let D ∋ 0 be a simply connected planar domain with 1
n
Z2 grid domain

approximation Dn ⊂ C. A grid domain is a domain whose boundary is a union

of edges of the scaled lattice. That is, Dn is the connected component

containing 0 in the complement of the closed faces of n−1Z2 intersecting ∂D.

Note that Dn is simply connected. Write V = V (Dn) for the set of vertices

contained in Dn

• ψDn
: Dn → D, ψDn

(0) = 0, ψ′
Dn

(0) > 0.

• γn: time-reversed LERW from 0 to ∂Dn (on 1
n
Z2).

• γ̃n = ψDn
(γn) is a path in D. Parameterize by capacity.

• Wn(t) =W0eiϑn(t): the Loewner driving function for γ̃n.
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A Rate of Convergence of LERW to SLE(2)

Theorem (Beneš-Johansson Viklund-K, 2011). Let 0 < ǫ < 1/24 be fixed, and let

D be a simply connected domain with inrad(D) = 1. For every T > 0 there exists

an n0 <∞ depending only on T such that whenever n > n0 there is a coupling of

γn with Brownian motion B(t), t ≥ 0, where eiB(0) is uniformly distributed on the

unit circle, with the property that

P

(

sup
0≤t≤T

|Wn(t)− eiB(2t)| > n−(1/24−ǫ)

)

< n−(1/24−ǫ).

Recall that

Wn(t) =Wn(0)e
iϑn(t), t ≥ 0,

denotes the Loewner driving function for the curve γ̃n = ψDn
(γn) parameterized

by capacity.
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Areas of Active Research

SLE describes the scaling limit of a single interface. What about multiple

interfaces? This has been considered from a physical point of view by Bauer,

Bernard, and Kytölä (2005). Mathematical approaches have been considered by

Dubédat (2006) and by K. and Lawler (2006). Rigorously constructing a measure

on multiple non-crossing SLE paths for 4 < κ < 8 is still an open problem. Proving

convergence for multiple interfaces in discrete models to multiple SLE is still an

open problem.

Viewed as a mathematical object, there is interest in distributional properties of the

SLE path. Beffara established the Hausdorff dimension of the curve (2004, 2008).

Sheffield and Alberts (2008) determined the Hausdorff dimension of γ ∩ R,

4 < κ < 8. It is an open problem to determine the Hausdorff dimension of the set

of double-points of SLEκ, 4 < κ < 8.

There is still a lot to be done to further strengthen the links between SLE and

CFT. One broad area involves rigorously proving predictions about critical

exponents and other “observables” for various 2d models.

28



Convergence of Multiple LERW to Multiple SLE2

• SLE can often be used to calculate “observables” such as crossing probabilities

(such as Cardy’s formula) and (non-)intersection probabilities.

• These calculations are often a crucial step in proving convergence of discrete

models to SLE.

• Although the following result is general, it should help in the particular case of

proving multiple LERW converges to multiple SLE2.
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Convergence of Multiple LERW to Multiple SLE2

0 x y

∞

γ[0,∞), a chordal SLEκ β[0, tβ ], a Brownian excursion

Theorem. (K. 2009) Suppose that 0 < x < y < ∞ are real numbers and let

β : [0, tβ ] → H be a Brownian excursion from x to y in H. If γ : [0,∞) → H is a

chordal SLEκ, 0 < κ ≤ 4, from 0 to ∞ in H, then

P{ γ[0,∞) ∩ β[0, tβ ] = ∅ } =
Γ(2a)Γ(4a+ 1)

Γ(2a+ 2)Γ(4a− 1)
(x/y)F (2, 1− 2a, 2a+ 2;x/y)

where F = 2F1 is the hypergeometric function and a = 2/κ.
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