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Introduction

The plan is to discuss joint work in progress that shows loop-erased random walk

on Z2 converges to SLE(2) with the time-parametrization taken into account.

Very often we hear statements like the following.

• Random walk converges to Brownian motion.

• Loop-erased random walk converges to SLE(2).

We’ve learned to interpret these as statements about weak convergence of

probability measures. In these particular examples, we can view the discrete objects

as continuous curves in a particular metric space.
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Random Walk Converges to Brownian Motion

{
t 7→

1

n
S(n2t ∧ τn)

}
(d)
−→ {t 7→ B(t ∧ τ1)}

S – simple random walk on Z2 with S0 = 0

B – complex Brownian motion with B0 = 0

τr – first time curve hits the circle of radius r

Convergence in the strong topology

d(γ1, γ2) = |tγ1
− tγ2

|+ sup
0≤t≤tγ1∨tγ2

|γ1(t)− γ2(t)|

where tγ is the lifetime of the curve γ.

– i.e., weak convergence of probability measures on metric space of curves

– accounts for different random curves running for different lengths of time
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Random Walk Converges to Brownian Motion

{
t 7→

1

n
S(n2t ∧ τn)

}
(d)
−→ {t 7→ B(t ∧ τ1)}

We want convergence of random walk to Brownian motion stopped when it exits

the unit disk D. We know (functional CLT) that we need to scale space by the

square root of time. It is notationally easier if we scale space by 1/n; that is, we

approximate the disk by
1

n
Z
2 ∩ D

and so we can equivalently consider random walks on Z2 ∩ nD. Note that

n2 ≤ E[τn] ≤ (n+ 1)2; we expect the random walk to take ∼ n2 steps to exit the

ball of radius n. Thus, in order to associate the “correct” continuous curve to the

random walk path, we need to introduce the speed function σn(t) = E[τn]t or

σn(t) = n2t.

Important. Not only are the random walk and the Brownian motion traces close,

they are close in space at roughly the same time.
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Introduction to SLE

The Schramm-Loewner evolution (SLE) with parameter κ was introduced in 1999

by Oded Schramm while considering possible scaling limits of loop-erased random

walk.

Since then, it has successfully been used to study various other lattice models from

two-dimensional statistical mechanics including percolation, uniform spanning trees,

self-avoiding walk, and the Ising model.

Crudely, one defines a discrete interface on the 1/n-scale lattice and then lets

n→ ∞. The limiting continuous “interface” is an SLE.

In “Conformal invariance of planar loop-erased random walks and uniform spanning

trees” (AOP 2004), Lawler, Schramm, and Werner showed that the scaling limit of

loop-erased random walk is SLE with parameter κ = 2.
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Review of Radial SLE

gt

b
b

γ([0, t])

Wt

Reparametrize γ so that

g′t(0) = et.

This is the capacity parametrization.
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Review of Radial SLE (cont)

The evolution of the curve γ(t), or more precisely, the evolution of the conformal

transformations gt : Dt → D, can be described by the Loewner equation.

For z ∈ D with z 6∈ γ[0,∞], the conformal transformations {gt(z), t ≥ 0} satisfy

∂

∂t
gt(z) = gt(z)

Wt + gt(z)

Wt − gt(z)
, g0(z) = z,

where

Wt = lim
z→γ(t)

gt(z).

We call W the driving function of the curve γ.

The radial Schramm-Loewner evolution with parameter κ ≥ 0 with the standard

parametrization is the random collection of conformal maps {gt, t ≥ 0} obtained

by solving the initial value problem

∂

∂t
gt(z) = gt(z)

ei
√
κBt + gt(z)

ei
√
κBt − gt(z)

, g0(z) = z. (LE)

where Bt is a standard one-dimensional Brownian motion.
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From LERW to SLE

• Let D ∋ 0 be a simply connected planar domain with 1
n
Z2 grid domain

approximation Dn ⊂ C. A grid domain is a domain whose boundary is a union

of edges of the scaled lattice. That is, Dn is the connected component

containing 0 in the complement of the closed faces of n−1Z2 intersecting ∂D.

• ψDn : Dn → D, ψDn (0) = 0, ψ′
Dn

(0) > 0.

• γn: time-reversed LERW from 0 to ∂Dn (on 1
n
Z2).

• γ̂n = ψDn (γn) is a path in D. Parameterize by capacity.

• Wn(t) =W0eiϑn(t): the Loewner driving function for γ̂n.
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Loop-Erased Random Walk Converges to SLE(2)

Consider the following metric on the space of curves in C:

ρ(γ1, γ2) = inf
φ

sup
0≤t≤1

|γ̃1(t)− γ̃2(t)|

where the infimum is over all choices of parametrizations γ̃1 and γ̃2 in [0, 1] of γ1

and γ2.

Let µn denote the law of γn, time-reversed LERW from 0 to ∂Dn, and let µ

denote the law of the image in D of radial SLE(2).

Theorem. (Lawler-Schramm-Werner)

The measures µn converge weakly to µ as n→ ∞ with respect to the metric ρ on

the space of curves.

Important. This theorem tells us that the LERW and SLE(2) traces are close. It

does not tell us that they are close in space at roughly the same time.
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Our Goal

Suppose that X is a LERW on Z2 started at the origin. We would like

(i) to show that there is a speed function t 7→ σn(t) so that

t 7→
1

n
X(σn(t) ∧ τn)

converges in law under the strong topology, and

(ii) to identify the limiting curve as SLE(2) in the natural time parametrization

that was recently introduced by Lawler-Sheffield and Lawler-Zhou.

Outline

• To discuss a strategy for (i) proving that the limit exists.

• To discuss a strategy for (ii) identifying the limit.

• We’ll see how to choose the speed function σn(t) to execute both strategies
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Strategy for (i) Proving that the Limit Exists

Prove tightness!

There are a number of techniques for proving tightness of a stochastic process.

But. . . most of them were designed for Markov processes.

So we’ll move to a different setting using an occupation measure.
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An Occupation Measure

If γ is a curve, then its occupation measure νγ identifies the amount of time γ

spends in each Borel subset of C.

Formally,

νγ(A) :=

∫ tγ

0
1{γ(s) ∈ A}ds

where A is a Borel subset of C.

Note. Implicit in the statement that γ is a curve is its time parametrization.

• νγ is supported on γ

• The total mass of νγ is tγ

Key observation.

occupation measure + curve modulo reparametrization ⇒ original curve
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An Occupation Measure

Ω – space of continuous curves

Ω̃ – equivalence classes of curves modulo reparametrization

Ω̃ := Ω/ ∼ where γ1 ∼ γ2 if ρ(γ1, γ2) := inf
φ

sup
0≤t≤tγ1

|γ1(t)− γ2(φ(t))| = 0

γ̃ – the equivalence class [γ̃], the class of curves equivalent to γ wrt ρ.

M – space of positive Borel measures on C.

Define T : Ω → Ω̃×M by

Tγ = (γ̃, νγ).

Key observation. We can recover γ from the pair (γ̃, νγ). Here’s how.

If η is any representation of γ̃ and Θη(t) = νγ(η[0, t]), then

γ(t) = η(Θ−1
η (t)).

Hence (γ̃, νγ) encodes γ !!!
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LERW Yn parameterized
by (scaled) natural time

(Ỹn, νYn
) (γ̃, µ)

SLE(2) parameterized
by natural time

SLE(2) parameterized
by capacity time

T S

(d)

(d)

Lawler-Sheffield

Yn =
1

n
X(σn(t) ∧ τn)

The topology on the top is the product topology: the one induced by ρ on Ω̃ along

with weak convergence on M.

Convergence on top implies convergence on bottom if T and S are continuous.

T is actually Lipshitz, but S is not continuous (or even well-defined) but it is at all

the limit points we will encounter.
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LERW Yn parameterized
by (scaled) natural time

(Ỹn, νYn
) (γ̃, µ)

SLE(2) parameterized
by natural time

SLE(2) parameterized
by capacity time

T S

(d)

(d)

Lawler-Sheffield

Yn =
1

n
X(σn(t) ∧ τn)

Strategy: prove tightness for (Ỹn, νYn ), then prove uniqueness of subsequential

limits.

Advantage: the Ỹn → γ̃ part has already been done! (LSW)

For tightness of νYn , it is sufficient to prove that the lifetimes of Yn are tight.

14



Strategy for (ii) Identifying the Limit

If γ is SLE in the natural time parametrization, then (γ̃, νγ) has certain natural

properties, namely it satisfies conformal convariance and the domain Markov

property.

In fact, (γ̃, νγ) is the unique pair having both properties.

Given tightness, the strategy is to show that all subsequential limits have these

properties.

It mimics the original LSW proof.
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Conformal Covariance

γ

γ∗

φ

µ = F (γ) µ∗ = F (γ∗)
Tφ

b

a

φ(a) φ(b)

F F

For Tφ, use the d-dimensional covariant transform

dµ∗(φ(z)) = |φ′(z)|d dµ(z)

where d is the Hausdorff dimension of the geometric object in question.
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Domain Markov Property

0

γ([0, t])

0

γ∗(s) := ht (γ[t, t + s])

ht

F

Tht

Tht
(γ[t,∞)) = µ∗ = F (γ∗)

µ∗ is independent of γ[0, t] and has the same law as µ.
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Properties of (γ̃, νγ)

There is a unique probability measure on Ω̃×M such that for a pair (γ̃, µ),

• γ̃ is SLE(2) in the unit disk D,

• µ is measurable with respect to γ̃,

• if γ ∈ γ̃, then µ(· ∩ γ[0, t]) is measurable wrt γ̃[0, t],

• E[dµ(z)] = G(z) dz where G is the Green’s function for SLE defined by

G(z) = lim
ǫ→0+

ǫ3/4P {γ ∩B(z; ǫ) 6= ∅} ,

and

• the domain Markov property holds for µ.

Uniqueness is easy, but existence is hard.
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Idea of Uniqueness

Conformal covariance and the domain Markov property uniquely imply how the

conditional expected density of the measure changes as the curve grows:

E[dµ(z) | Ft] = |g′t(z)|
2−dG(gt(z)) dz.

Therefore,

E[µ(A) | Ft] = µ(A ∩ γ[0, t]) + E[µ(A ∩ γ[0, t]c) | Ft]

= µ(A ∩ γ[0, t]) +

∫

A∩γ[0,t]c
|g′t(z)|

2−dG(gt(z)) dz.

The uniqueness of the Doob-Meyer decomposition implies the uniqueness of

t 7→ µ(A ∩ γ[0, t]) and hence uniqueness of µ.
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Strategy for (ii) Identifying the Limit

Show that all subsequential limits (γ̃, µ) of (Ỹn, νYn ) have the properties that

• γ̃ is SLE(2) in the unit disk D,

• µ is measurable with respect to γ̃,

• if γ ∈ γ̃, then µ(· ∩ γ[0, t]) is measurable wrt γ̃[0, t],

• E[dµ(z)] = G(z) dz where G is the Green’s function for SLE, and

• the domain Markov property holds for µ.
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How should the speed function by chosen?

Yn(t) :=
1

n
X(σn(t) ∧ τn)

Most desirable choice is σn(t) = n5/4t

Based on the long-standing conjecture that Mn “grows like” n5/4 where Mn is the

number of steps in the LERW (i.e., Mn = τn)

Very, very difficult to prove! This would imply that

Mn

n5/4

has a limiting distribution as n → ∞.

Strongest known result is still that

lim
n→∞

logMn

logn
=

5

4
.

(Originally proved by Kenyon, later by Masson.)

But we don’t even know how to get tightness!
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How should the speed function by chosen?

Yn(t) :=
1

n
X(σn(t) ∧ τn)

Second choice is σn(t) = E[Mn]t

This implies that the total lifetime of Yn is Mn/E[Mn]

Barlow and Masson give tightness bounds for this. In fact, they also give

exponential tail bounds

P

{
α−1 ≤

Mn

E[Mn]
≤ α

}
≥ 1− Ce−cα1/2

.

“Historical” remark: This result is what really motivated the present work.

Another advantage: If this works, then showing convergence for the first choice of

speed function reduces to showing that

E[Mn] ∼ cn5/4.

Using the expected number of steps is the strategy that Garban-Pete-Schramm

employed in their recent work on percolation.
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How should the speed function by chosen?

Yn(t) :=
1

n
X(σn(t) ∧ τn)

So let’s use our second choice:

σn(t) = E[Mn]t.

There are five properties that all subsequential limits need to satisfy. The

measurability properties seem okay.

But, we still need to show that all subsequential limits satisfy conformal covariance

and the domain Markov property.

Let’s focus on trying to prove that

E[dµ(z)] = G(z) dz

for all subsequential limits µ of νYn .
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How should the speed function by chosen?

Conjecture. If z ∈ D and ǫ > 0 is sufficiently small, then

E [νYn (B(z; ǫ)) | Yn ∩B(z; ǫ) 6= ∅] =
E[Mǫn]

E[Mn]
+ o(1)

as n → ∞.

Consequence:

E[µ(B(z; ǫ))] = lim
n→∞

E[νYn (B(z; ǫ))]

=

[
E[Mǫn]

E[Mn]
+ o(1)

]
P {Yn ∩ B(z; ǫ/2) 6= 0}

= ǫ5/4P {γ ∩B(z; ǫ/2) 6= ∅}

∼ ǫ2G(z).

Theorem. If z ∈ D and ǫ > 0 is sufficiently small, then

E [νYn (B(z; ǫ)) | Yn ∩B(z; ǫ) 6= ∅] ≤ C log(1/ǫ)ǫ5/4.
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How should the speed function by chosen?

Conjecture. If z ∈ D and ǫ > 0 is sufficiently small, then

E [νYn (B(z; ǫ)) | Yn ∩B(z; ǫ) 6= ∅] =
E[Mǫn]

E[Mn]
+ o(1)

as n → ∞.

To prove the conjecture, need a strong separation lemma. This is currently out of

reach.

Says that the curve up until it hits the ball of radius ǫ does not too strongly affect

how the curve behaves inside the ball of radius ǫ.

Separation lemmas of this sort are fundamental to the work of GPS.
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